Update ViT
This commit is contained in:
		
							
								
								
									
										319
									
								
								xautodl/xlayers/super_mlp.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										319
									
								
								xautodl/xlayers/super_mlp.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,319 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||
| ##################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| import math | ||||
| from typing import Optional, Callable | ||||
|  | ||||
| from xautodl import spaces | ||||
| from .super_module import SuperModule | ||||
| from .super_module import IntSpaceType | ||||
| from .super_module import BoolSpaceType | ||||
|  | ||||
|  | ||||
| class SuperLinear(SuperModule): | ||||
|     """Applies a linear transformation to the incoming data: :math:`y = xA^T + b`""" | ||||
|  | ||||
|     def __init__( | ||||
|         self, | ||||
|         in_features: IntSpaceType, | ||||
|         out_features: IntSpaceType, | ||||
|         bias: BoolSpaceType = True, | ||||
|     ) -> None: | ||||
|         super(SuperLinear, self).__init__() | ||||
|  | ||||
|         # the raw input args | ||||
|         self._in_features = in_features | ||||
|         self._out_features = out_features | ||||
|         self._bias = bias | ||||
|         # weights to be optimized | ||||
|         self.register_parameter( | ||||
|             "_super_weight", | ||||
|             torch.nn.Parameter(torch.Tensor(self.out_features, self.in_features)), | ||||
|         ) | ||||
|         if self.bias: | ||||
|             self.register_parameter( | ||||
|                 "_super_bias", torch.nn.Parameter(torch.Tensor(self.out_features)) | ||||
|             ) | ||||
|         else: | ||||
|             self.register_parameter("_super_bias", None) | ||||
|         self.reset_parameters() | ||||
|  | ||||
|     @property | ||||
|     def in_features(self): | ||||
|         return spaces.get_max(self._in_features) | ||||
|  | ||||
|     @property | ||||
|     def out_features(self): | ||||
|         return spaces.get_max(self._out_features) | ||||
|  | ||||
|     @property | ||||
|     def bias(self): | ||||
|         return spaces.has_categorical(self._bias, True) | ||||
|  | ||||
|     @property | ||||
|     def abstract_search_space(self): | ||||
|         root_node = spaces.VirtualNode(id(self)) | ||||
|         if not spaces.is_determined(self._in_features): | ||||
|             root_node.append( | ||||
|                 "_in_features", self._in_features.abstract(reuse_last=True) | ||||
|             ) | ||||
|         if not spaces.is_determined(self._out_features): | ||||
|             root_node.append( | ||||
|                 "_out_features", self._out_features.abstract(reuse_last=True) | ||||
|             ) | ||||
|         if not spaces.is_determined(self._bias): | ||||
|             root_node.append("_bias", self._bias.abstract(reuse_last=True)) | ||||
|         return root_node | ||||
|  | ||||
|     def reset_parameters(self) -> None: | ||||
|         nn.init.kaiming_uniform_(self._super_weight, a=math.sqrt(5)) | ||||
|         if self.bias: | ||||
|             fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self._super_weight) | ||||
|             bound = 1 / math.sqrt(fan_in) | ||||
|             nn.init.uniform_(self._super_bias, -bound, bound) | ||||
|  | ||||
|     def forward_candidate(self, input: torch.Tensor) -> torch.Tensor: | ||||
|         # check inputs -> | ||||
|         if not spaces.is_determined(self._in_features): | ||||
|             expected_input_dim = self.abstract_child["_in_features"].value | ||||
|         else: | ||||
|             expected_input_dim = spaces.get_determined_value(self._in_features) | ||||
|         if input.size(-1) != expected_input_dim: | ||||
|             raise ValueError( | ||||
|                 "Expect the input dim of {:} instead of {:}".format( | ||||
|                     expected_input_dim, input.size(-1) | ||||
|                 ) | ||||
|             ) | ||||
|         # create the weight matrix | ||||
|         if not spaces.is_determined(self._out_features): | ||||
|             out_dim = self.abstract_child["_out_features"].value | ||||
|         else: | ||||
|             out_dim = spaces.get_determined_value(self._out_features) | ||||
|         candidate_weight = self._super_weight[:out_dim, :expected_input_dim] | ||||
|         # create the bias matrix | ||||
|         if not spaces.is_determined(self._bias): | ||||
|             if self.abstract_child["_bias"].value: | ||||
|                 candidate_bias = self._super_bias[:out_dim] | ||||
|             else: | ||||
|                 candidate_bias = None | ||||
|         else: | ||||
|             if spaces.get_determined_value(self._bias): | ||||
|                 candidate_bias = self._super_bias[:out_dim] | ||||
|             else: | ||||
|                 candidate_bias = None | ||||
|         return F.linear(input, candidate_weight, candidate_bias) | ||||
|  | ||||
|     def forward_raw(self, input: torch.Tensor) -> torch.Tensor: | ||||
|         return F.linear(input, self._super_weight, self._super_bias) | ||||
|  | ||||
|     def extra_repr(self) -> str: | ||||
|         return "in_features={:}, out_features={:}, bias={:}".format( | ||||
|             self._in_features, self._out_features, self._bias | ||||
|         ) | ||||
|  | ||||
|     def forward_with_container(self, input, container, prefix=[]): | ||||
|         super_weight_name = ".".join(prefix + ["_super_weight"]) | ||||
|         super_weight = container.query(super_weight_name) | ||||
|         super_bias_name = ".".join(prefix + ["_super_bias"]) | ||||
|         if container.has(super_bias_name): | ||||
|             super_bias = container.query(super_bias_name) | ||||
|         else: | ||||
|             super_bias = None | ||||
|         return F.linear(input, super_weight, super_bias) | ||||
|  | ||||
|  | ||||
| class SuperMLPv1(SuperModule): | ||||
|     """An MLP layer: FC -> Activation -> Drop -> FC -> Drop.""" | ||||
|  | ||||
|     def __init__( | ||||
|         self, | ||||
|         in_features: IntSpaceType, | ||||
|         hidden_features: IntSpaceType, | ||||
|         out_features: IntSpaceType, | ||||
|         act_layer: Callable[[], nn.Module] = nn.GELU, | ||||
|         drop: Optional[float] = None, | ||||
|     ): | ||||
|         super(SuperMLPv1, self).__init__() | ||||
|         self._in_features = in_features | ||||
|         self._hidden_features = hidden_features | ||||
|         self._out_features = out_features | ||||
|         self._drop_rate = drop | ||||
|         self.fc1 = SuperLinear(in_features, hidden_features) | ||||
|         self.act = act_layer() | ||||
|         self.fc2 = SuperLinear(hidden_features, out_features) | ||||
|         self.drop = nn.Dropout(drop or 0.0) | ||||
|  | ||||
|     @property | ||||
|     def abstract_search_space(self): | ||||
|         root_node = spaces.VirtualNode(id(self)) | ||||
|         space_fc1 = self.fc1.abstract_search_space | ||||
|         space_fc2 = self.fc2.abstract_search_space | ||||
|         if not spaces.is_determined(space_fc1): | ||||
|             root_node.append("fc1", space_fc1) | ||||
|         if not spaces.is_determined(space_fc2): | ||||
|             root_node.append("fc2", space_fc2) | ||||
|         return root_node | ||||
|  | ||||
|     def apply_candidate(self, abstract_child: spaces.VirtualNode): | ||||
|         super(SuperMLPv1, self).apply_candidate(abstract_child) | ||||
|         if "fc1" in abstract_child: | ||||
|             self.fc1.apply_candidate(abstract_child["fc1"]) | ||||
|         if "fc2" in abstract_child: | ||||
|             self.fc2.apply_candidate(abstract_child["fc2"]) | ||||
|  | ||||
|     def forward_candidate(self, input: torch.Tensor) -> torch.Tensor: | ||||
|         return self.forward_raw(input) | ||||
|  | ||||
|     def forward_raw(self, input: torch.Tensor) -> torch.Tensor: | ||||
|         x = self.fc1(input) | ||||
|         x = self.act(x) | ||||
|         x = self.drop(x) | ||||
|         x = self.fc2(x) | ||||
|         x = self.drop(x) | ||||
|         return x | ||||
|  | ||||
|     def extra_repr(self) -> str: | ||||
|         return "in_features={:}, hidden_features={:}, out_features={:}, drop={:}, fc1 -> act -> drop -> fc2 -> drop,".format( | ||||
|             self._in_features, | ||||
|             self._hidden_features, | ||||
|             self._out_features, | ||||
|             self._drop_rate, | ||||
|         ) | ||||
|  | ||||
|  | ||||
| class SuperMLPv2(SuperModule): | ||||
|     """An MLP layer: FC -> Activation -> Drop -> FC -> Drop.""" | ||||
|  | ||||
|     def __init__( | ||||
|         self, | ||||
|         in_features: IntSpaceType, | ||||
|         hidden_multiplier: IntSpaceType, | ||||
|         out_features: IntSpaceType, | ||||
|         act_layer: Callable[[], nn.Module] = nn.GELU, | ||||
|         drop: Optional[float] = None, | ||||
|     ): | ||||
|         super(SuperMLPv2, self).__init__() | ||||
|         self._in_features = in_features | ||||
|         self._hidden_multiplier = hidden_multiplier | ||||
|         self._out_features = out_features | ||||
|         self._drop_rate = drop | ||||
|         self._params = nn.ParameterDict({}) | ||||
|  | ||||
|         self._create_linear( | ||||
|             "fc1", self.in_features, int(self.in_features * self.hidden_multiplier) | ||||
|         ) | ||||
|         self._create_linear( | ||||
|             "fc2", int(self.in_features * self.hidden_multiplier), self.out_features | ||||
|         ) | ||||
|         self.act = act_layer() | ||||
|         self.drop = nn.Dropout(drop or 0.0) | ||||
|         self.reset_parameters() | ||||
|  | ||||
|     @property | ||||
|     def in_features(self): | ||||
|         return spaces.get_max(self._in_features) | ||||
|  | ||||
|     @property | ||||
|     def hidden_multiplier(self): | ||||
|         return spaces.get_max(self._hidden_multiplier) | ||||
|  | ||||
|     @property | ||||
|     def out_features(self): | ||||
|         return spaces.get_max(self._out_features) | ||||
|  | ||||
|     def _create_linear(self, name, inC, outC): | ||||
|         self._params["{:}_super_weight".format(name)] = torch.nn.Parameter( | ||||
|             torch.Tensor(outC, inC) | ||||
|         ) | ||||
|         self._params["{:}_super_bias".format(name)] = torch.nn.Parameter( | ||||
|             torch.Tensor(outC) | ||||
|         ) | ||||
|  | ||||
|     def reset_parameters(self) -> None: | ||||
|         nn.init.kaiming_uniform_(self._params["fc1_super_weight"], a=math.sqrt(5)) | ||||
|         nn.init.kaiming_uniform_(self._params["fc2_super_weight"], a=math.sqrt(5)) | ||||
|         fan_in, _ = nn.init._calculate_fan_in_and_fan_out( | ||||
|             self._params["fc1_super_weight"] | ||||
|         ) | ||||
|         bound = 1 / math.sqrt(fan_in) | ||||
|         nn.init.uniform_(self._params["fc1_super_bias"], -bound, bound) | ||||
|         fan_in, _ = nn.init._calculate_fan_in_and_fan_out( | ||||
|             self._params["fc2_super_weight"] | ||||
|         ) | ||||
|         bound = 1 / math.sqrt(fan_in) | ||||
|         nn.init.uniform_(self._params["fc2_super_bias"], -bound, bound) | ||||
|  | ||||
|     @property | ||||
|     def abstract_search_space(self): | ||||
|         root_node = spaces.VirtualNode(id(self)) | ||||
|         if not spaces.is_determined(self._in_features): | ||||
|             root_node.append( | ||||
|                 "_in_features", self._in_features.abstract(reuse_last=True) | ||||
|             ) | ||||
|         if not spaces.is_determined(self._hidden_multiplier): | ||||
|             root_node.append( | ||||
|                 "_hidden_multiplier", self._hidden_multiplier.abstract(reuse_last=True) | ||||
|             ) | ||||
|         if not spaces.is_determined(self._out_features): | ||||
|             root_node.append( | ||||
|                 "_out_features", self._out_features.abstract(reuse_last=True) | ||||
|             ) | ||||
|         return root_node | ||||
|  | ||||
|     def forward_candidate(self, input: torch.Tensor) -> torch.Tensor: | ||||
|         # check inputs -> | ||||
|         if not spaces.is_determined(self._in_features): | ||||
|             expected_input_dim = self.abstract_child["_in_features"].value | ||||
|         else: | ||||
|             expected_input_dim = spaces.get_determined_value(self._in_features) | ||||
|         if input.size(-1) != expected_input_dim: | ||||
|             raise ValueError( | ||||
|                 "Expect the input dim of {:} instead of {:}".format( | ||||
|                     expected_input_dim, input.size(-1) | ||||
|                 ) | ||||
|             ) | ||||
|         # create the weight and bias matrix for fc1 | ||||
|         if not spaces.is_determined(self._hidden_multiplier): | ||||
|             hmul = self.abstract_child["_hidden_multiplier"].value * expected_input_dim | ||||
|         else: | ||||
|             hmul = spaces.get_determined_value(self._hidden_multiplier) | ||||
|         hidden_dim = int(expected_input_dim * hmul) | ||||
|         _fc1_weight = self._params["fc1_super_weight"][:hidden_dim, :expected_input_dim] | ||||
|         _fc1_bias = self._params["fc1_super_bias"][:hidden_dim] | ||||
|         x = F.linear(input, _fc1_weight, _fc1_bias) | ||||
|         x = self.act(x) | ||||
|         x = self.drop(x) | ||||
|         # create the weight and bias matrix for fc2 | ||||
|         if not spaces.is_determined(self._out_features): | ||||
|             out_dim = self.abstract_child["_out_features"].value | ||||
|         else: | ||||
|             out_dim = spaces.get_determined_value(self._out_features) | ||||
|         _fc2_weight = self._params["fc2_super_weight"][:out_dim, :hidden_dim] | ||||
|         _fc2_bias = self._params["fc2_super_bias"][:out_dim] | ||||
|         x = F.linear(x, _fc2_weight, _fc2_bias) | ||||
|         x = self.drop(x) | ||||
|         return x | ||||
|  | ||||
|     def forward_raw(self, input: torch.Tensor) -> torch.Tensor: | ||||
|         x = F.linear( | ||||
|             input, self._params["fc1_super_weight"], self._params["fc1_super_bias"] | ||||
|         ) | ||||
|         x = self.act(x) | ||||
|         x = self.drop(x) | ||||
|         x = F.linear( | ||||
|             x, self._params["fc2_super_weight"], self._params["fc2_super_bias"] | ||||
|         ) | ||||
|         x = self.drop(x) | ||||
|         return x | ||||
|  | ||||
|     def extra_repr(self) -> str: | ||||
|         return "in_features={:}, hidden_multiplier={:}, out_features={:}, drop={:}, fc1 -> act -> drop -> fc2 -> drop,".format( | ||||
|             self._in_features, | ||||
|             self._hidden_multiplier, | ||||
|             self._out_features, | ||||
|             self._drop_rate, | ||||
|         ) | ||||
		Reference in New Issue
	
	Block a user