Complete xlayers.rearrange
This commit is contained in:
parent
f9bbf974de
commit
744ce97bc5
@ -29,6 +29,7 @@ class TestSuperSelfAttention(unittest.TestCase):
|
||||
abstract_child = abstract_space.random(reuse_last=True)
|
||||
print("The abstract child program is:\n{:}".format(abstract_child))
|
||||
model.set_super_run_type(super_core.SuperRunMode.Candidate)
|
||||
model.enable_candidate()
|
||||
model.apply_candidate(abstract_child)
|
||||
outputs = model(inputs)
|
||||
return abstract_child, outputs
|
||||
|
@ -25,6 +25,7 @@ def _internal_func(inputs, model):
|
||||
abstract_space.clean_last()
|
||||
abstract_child = abstract_space.random(reuse_last=True)
|
||||
print("The abstract child program is:\n{:}".format(abstract_child))
|
||||
model.enable_candidate()
|
||||
model.set_super_run_type(super_core.SuperRunMode.Candidate)
|
||||
model.apply_candidate(abstract_child)
|
||||
outputs = model(inputs)
|
||||
|
@ -37,6 +37,7 @@ class TestSuperLinear(unittest.TestCase):
|
||||
print("The abstract child program:\n{:}".format(abstract_child))
|
||||
|
||||
model.set_super_run_type(super_core.SuperRunMode.Candidate)
|
||||
model.enable_candidate()
|
||||
model.apply_candidate(abstract_child)
|
||||
|
||||
output_shape = (20, abstract_child["_out_features"].value)
|
||||
@ -77,6 +78,7 @@ class TestSuperLinear(unittest.TestCase):
|
||||
)
|
||||
|
||||
mlp.set_super_run_type(super_core.SuperRunMode.Candidate)
|
||||
mlp.enable_candidate()
|
||||
mlp.apply_candidate(abstract_child)
|
||||
outputs = mlp(inputs)
|
||||
output_shape = (4, abstract_child["fc2"]["_out_features"].value)
|
||||
@ -103,6 +105,7 @@ class TestSuperLinear(unittest.TestCase):
|
||||
print("The abstract child program is:\n{:}".format(abstract_child))
|
||||
|
||||
mlp.set_super_run_type(super_core.SuperRunMode.Candidate)
|
||||
mlp.enable_candidate()
|
||||
mlp.apply_candidate(abstract_child)
|
||||
outputs = mlp(inputs)
|
||||
output_shape = (4, abstract_child["_out_features"].value)
|
||||
@ -120,6 +123,7 @@ class TestSuperLinear(unittest.TestCase):
|
||||
print("The abstract child program:\n{:}".format(abstract_child))
|
||||
|
||||
model.set_super_run_type(super_core.SuperRunMode.Candidate)
|
||||
model.enable_candidate()
|
||||
model.apply_candidate(abstract_child)
|
||||
outputs = model(inputs)
|
||||
output_shape = (4, 60, abstract_child["_embed_dim"].value)
|
||||
|
@ -38,6 +38,7 @@ class TestSuperSimpleNorm(unittest.TestCase):
|
||||
print("The abstract child program:\n{:}".format(abstract_child))
|
||||
|
||||
model.set_super_run_type(super_core.SuperRunMode.Candidate)
|
||||
model.enable_candidate()
|
||||
model.apply_candidate(abstract_child)
|
||||
|
||||
output_shape = (20, abstract_child["1"]["_out_features"].value)
|
||||
@ -70,6 +71,7 @@ class TestSuperSimpleNorm(unittest.TestCase):
|
||||
print("The abstract child program:\n{:}".format(abstract_child))
|
||||
|
||||
model.set_super_run_type(super_core.SuperRunMode.Candidate)
|
||||
model.enable_candidate()
|
||||
model.apply_candidate(abstract_child)
|
||||
|
||||
output_shape = (20, abstract_child["2"]["_out_features"].value)
|
||||
|
@ -5,12 +5,6 @@
|
||||
#####################################################
|
||||
import sys
|
||||
import unittest
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / "..").resolve()
|
||||
print("LIB-DIR: {:}".format(lib_dir))
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
|
||||
import torch
|
||||
from xautodl import xlayers
|
||||
@ -28,3 +22,4 @@ class TestSuperReArrange(unittest.TestCase):
|
||||
print(layer)
|
||||
outs = layer(tensor)
|
||||
print("The output tensor shape: {:}".format(outs.shape))
|
||||
assert tuple(outs.shape) == (8, 32 * 32 // 16, 4 * 4 * 4)
|
||||
|
@ -1,36 +0,0 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
||||
#####################################################
|
||||
# pytest ./tests/test_super_model.py -s #
|
||||
#####################################################
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
from xautodl.xlayers.super_core import SuperRunMode
|
||||
from xautodl.trade_models import get_transformer
|
||||
|
||||
|
||||
class TestSuperTransformer(unittest.TestCase):
|
||||
"""Test the super transformer."""
|
||||
|
||||
def test_super_transformer(self):
|
||||
model = get_transformer(None)
|
||||
model.apply_verbose(False)
|
||||
print(model)
|
||||
|
||||
inputs = torch.rand(10, 360)
|
||||
print("Input shape: {:}".format(inputs.shape))
|
||||
outputs = model(inputs)
|
||||
self.assertEqual(tuple(outputs.shape), (10,))
|
||||
|
||||
abstract_space = model.abstract_search_space
|
||||
abstract_space.clean_last()
|
||||
abstract_child = abstract_space.random(reuse_last=True)
|
||||
print("The abstract searc space:\n{:}".format(abstract_space))
|
||||
print("The abstract child program:\n{:}".format(abstract_child))
|
||||
|
||||
model.set_super_run_type(SuperRunMode.Candidate)
|
||||
model.apply_candidate(abstract_child)
|
||||
|
||||
outputs = model(inputs)
|
||||
self.assertEqual(tuple(outputs.shape), (10,))
|
@ -1,4 +1,28 @@
|
||||
# borrowed from https://github.com/arogozhnikov/einops/blob/master/einops/parsing.py
|
||||
import warnings
|
||||
import keyword
|
||||
from typing import List
|
||||
|
||||
|
||||
class AnonymousAxis:
|
||||
"""Important thing: all instances of this class are not equal to each other"""
|
||||
|
||||
def __init__(self, value: str):
|
||||
self.value = int(value)
|
||||
if self.value <= 1:
|
||||
if self.value == 1:
|
||||
raise EinopsError(
|
||||
"No need to create anonymous axis of length 1. Report this as an issue"
|
||||
)
|
||||
else:
|
||||
raise EinopsError(
|
||||
"Anonymous axis should have positive length, not {}".format(
|
||||
self.value
|
||||
)
|
||||
)
|
||||
|
||||
def __repr__(self):
|
||||
return "{}-axis".format(str(self.value))
|
||||
|
||||
|
||||
class ParsedExpression:
|
||||
@ -8,24 +32,13 @@ class ParsedExpression:
|
||||
"""
|
||||
|
||||
def __init__(self, expression):
|
||||
self.has_ellipsis = False
|
||||
self.has_ellipsis_parenthesized = None
|
||||
self.identifiers = set()
|
||||
# that's axes like 2, 3 or 5. Axes with size 1 are exceptional and replaced with empty composition
|
||||
self.has_non_unitary_anonymous_axes = False
|
||||
# composition keeps structure of composite axes, see how different corner cases are handled in tests
|
||||
self.composition = []
|
||||
if "." in expression:
|
||||
if "..." not in expression:
|
||||
raise ValueError(
|
||||
"Expression may contain dots only inside ellipsis (...)"
|
||||
)
|
||||
if str.count(expression, "...") != 1 or str.count(expression, ".") != 3:
|
||||
raise ValueError(
|
||||
"Expression may contain dots only inside ellipsis (...); only one ellipsis for tensor "
|
||||
)
|
||||
expression = expression.replace("...", _ellipsis)
|
||||
self.has_ellipsis = True
|
||||
raise ValueError("Does not support . in the expression.")
|
||||
|
||||
bracket_group = None
|
||||
|
||||
@ -37,37 +50,28 @@ class ParsedExpression:
|
||||
x
|
||||
)
|
||||
)
|
||||
if x == _ellipsis:
|
||||
self.identifiers.add(_ellipsis)
|
||||
is_number = str.isdecimal(x)
|
||||
if is_number and int(x) == 1:
|
||||
# handling the case of anonymous axis of length 1
|
||||
if bracket_group is None:
|
||||
self.composition.append(_ellipsis)
|
||||
self.has_ellipsis_parenthesized = False
|
||||
self.composition.append([])
|
||||
else:
|
||||
bracket_group.append(_ellipsis)
|
||||
self.has_ellipsis_parenthesized = True
|
||||
pass # no need to think about 1s inside parenthesis
|
||||
return
|
||||
is_axis_name, reason = self.check_axis_name(x, return_reason=True)
|
||||
if not (is_number or is_axis_name):
|
||||
raise ValueError(
|
||||
"Invalid axis identifier: {}\n{}".format(x, reason)
|
||||
)
|
||||
if is_number:
|
||||
x = AnonymousAxis(x)
|
||||
self.identifiers.add(x)
|
||||
if is_number:
|
||||
self.has_non_unitary_anonymous_axes = True
|
||||
if bracket_group is None:
|
||||
self.composition.append([x])
|
||||
else:
|
||||
is_number = str.isdecimal(x)
|
||||
if is_number and int(x) == 1:
|
||||
# handling the case of anonymous axis of length 1
|
||||
if bracket_group is None:
|
||||
self.composition.append([])
|
||||
else:
|
||||
pass # no need to think about 1s inside parenthesis
|
||||
return
|
||||
is_axis_name, reason = self.check_axis_name(x, return_reason=True)
|
||||
if not (is_number or is_axis_name):
|
||||
raise ValueError(
|
||||
"Invalid axis identifier: {}\n{}".format(x, reason)
|
||||
)
|
||||
if is_number:
|
||||
x = AnonymousAxis(x)
|
||||
self.identifiers.add(x)
|
||||
if is_number:
|
||||
self.has_non_unitary_anonymous_axes = True
|
||||
if bracket_group is None:
|
||||
self.composition.append([x])
|
||||
else:
|
||||
bracket_group.append(x)
|
||||
bracket_group.append(x)
|
||||
|
||||
current_identifier = None
|
||||
for char in expression:
|
||||
@ -85,7 +89,7 @@ class ParsedExpression:
|
||||
raise ValueError("Brackets are not balanced")
|
||||
self.composition.append(bracket_group)
|
||||
bracket_group = None
|
||||
elif str.isalnum(char) or char in ["_", _ellipsis]:
|
||||
elif str.isalnum(char) or char == "_":
|
||||
if current_identifier is None:
|
||||
current_identifier = char
|
||||
else:
|
||||
@ -143,3 +147,8 @@ class ParsedExpression:
|
||||
return result
|
||||
else:
|
||||
return result[0]
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return "{name}({composition})".format(
|
||||
name=self.__class__.__name__, composition=self.composition
|
||||
)
|
||||
|
@ -21,6 +21,8 @@ from .super_utils import ShapeContainer
|
||||
BEST_DIR_KEY = "best_model_dir"
|
||||
BEST_NAME_KEY = "best_model_name"
|
||||
BEST_SCORE_KEY = "best_model_score"
|
||||
ENABLE_CANDIDATE = 0
|
||||
DISABLE_CANDIDATE = 1
|
||||
|
||||
|
||||
class SuperModule(abc.ABC, nn.Module):
|
||||
@ -32,6 +34,7 @@ class SuperModule(abc.ABC, nn.Module):
|
||||
self._abstract_child = None
|
||||
self._verbose = False
|
||||
self._meta_info = {}
|
||||
self._candidate_mode = DISABLE_CANDIDATE
|
||||
|
||||
def set_super_run_type(self, super_run_type):
|
||||
def _reset_super_run(m):
|
||||
@ -65,6 +68,20 @@ class SuperModule(abc.ABC, nn.Module):
|
||||
)
|
||||
self._abstract_child = abstract_child
|
||||
|
||||
def enable_candidate(self):
|
||||
def _enable_candidate(m):
|
||||
if isinstance(m, SuperModule):
|
||||
m._candidate_mode = ENABLE_CANDIDATE
|
||||
|
||||
self.apply(_enable_candidate)
|
||||
|
||||
def disable_candidate(self):
|
||||
def _disable_candidate(m):
|
||||
if isinstance(m, SuperModule):
|
||||
m._candidate_mode = DISABLE_CANDIDATE
|
||||
|
||||
self.apply(_disable_candidate)
|
||||
|
||||
def get_w_container(self):
|
||||
container = TensorContainer()
|
||||
for name, param in self.named_parameters():
|
||||
@ -191,9 +208,11 @@ class SuperModule(abc.ABC, nn.Module):
|
||||
if self.super_run_type == SuperRunMode.FullModel:
|
||||
outputs = self.forward_raw(*inputs)
|
||||
elif self.super_run_type == SuperRunMode.Candidate:
|
||||
if self._candidate_mode == DISABLE_CANDIDATE:
|
||||
raise ValueError("candidate mode is disabled")
|
||||
outputs = self.forward_candidate(*inputs)
|
||||
else:
|
||||
raise ModeError(
|
||||
raise ValueError(
|
||||
"Unknown Super Model Run Mode: {:}".format(self.super_run_type)
|
||||
)
|
||||
if self.verbose:
|
||||
|
@ -8,10 +8,14 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
import math
|
||||
import numpy as np
|
||||
import itertools
|
||||
import functools
|
||||
from collections import OrderedDict
|
||||
from typing import Optional, Callable
|
||||
|
||||
from xautodl import spaces
|
||||
from .misc_utils import ParsedExpression
|
||||
from .misc_utils import ParsedExpression, AnonymousAxis
|
||||
from .super_module import SuperModule
|
||||
from .super_module import IntSpaceType
|
||||
from .super_module import BoolSpaceType
|
||||
@ -31,11 +35,133 @@ class SuperReArrange(SuperModule):
|
||||
left, right = pattern.split("->")
|
||||
left = ParsedExpression(left)
|
||||
right = ParsedExpression(right)
|
||||
difference = set.symmetric_difference(left.identifiers, right.identifiers)
|
||||
if difference:
|
||||
raise ValueError(
|
||||
"Identifiers only on one side of expression (should be on both): {}".format(
|
||||
difference
|
||||
)
|
||||
)
|
||||
|
||||
import pdb
|
||||
# parsing all dimensions to find out lengths
|
||||
axis_name2known_length = OrderedDict()
|
||||
for composite_axis in left.composition:
|
||||
for axis_name in composite_axis:
|
||||
if isinstance(axis_name, AnonymousAxis):
|
||||
axis_name2known_length[axis_name] = axis_name.value
|
||||
else:
|
||||
axis_name2known_length[axis_name] = None
|
||||
for axis_name in right.identifiers:
|
||||
if axis_name not in axis_name2known_length:
|
||||
if isinstance(axis_name, AnonymousAxis):
|
||||
axis_name2known_length[axis_name] = axis_name.value
|
||||
else:
|
||||
axis_name2known_length[axis_name] = None
|
||||
|
||||
pdb.set_trace()
|
||||
print("-")
|
||||
axis_name2position = {
|
||||
name: position for position, name in enumerate(axis_name2known_length)
|
||||
}
|
||||
for elementary_axis, axis_length in axes_lengths:
|
||||
if not ParsedExpression.check_axis_name(elementary_axis):
|
||||
raise ValueError("Invalid name for an axis", elementary_axis)
|
||||
if elementary_axis not in axis_name2known_length:
|
||||
raise ValueError(
|
||||
"Axis {} is not used in transform".format(elementary_axis)
|
||||
)
|
||||
axis_name2known_length[elementary_axis] = axis_length
|
||||
|
||||
input_composite_axes = []
|
||||
# some of shapes will be inferred later - all information is prepared for faster inference
|
||||
for composite_axis in left.composition:
|
||||
known = {
|
||||
axis
|
||||
for axis in composite_axis
|
||||
if axis_name2known_length[axis] is not None
|
||||
}
|
||||
unknown = {
|
||||
axis for axis in composite_axis if axis_name2known_length[axis] is None
|
||||
}
|
||||
if len(unknown) > 1:
|
||||
raise ValueError("Could not infer sizes for {}".format(unknown))
|
||||
assert len(unknown) + len(known) == len(composite_axis)
|
||||
input_composite_axes.append(
|
||||
(
|
||||
[axis_name2position[axis] for axis in known],
|
||||
[axis_name2position[axis] for axis in unknown],
|
||||
)
|
||||
)
|
||||
|
||||
axis_position_after_reduction = {}
|
||||
for axis_name in itertools.chain(*left.composition):
|
||||
if axis_name in right.identifiers:
|
||||
axis_position_after_reduction[axis_name] = len(
|
||||
axis_position_after_reduction
|
||||
)
|
||||
|
||||
result_axes_grouping = []
|
||||
for composite_axis in right.composition:
|
||||
result_axes_grouping.append(
|
||||
[axis_name2position[axis] for axis in composite_axis]
|
||||
)
|
||||
|
||||
ordered_axis_right = list(itertools.chain(*right.composition))
|
||||
axes_permutation = tuple(
|
||||
axis_position_after_reduction[axis]
|
||||
for axis in ordered_axis_right
|
||||
if axis in left.identifiers
|
||||
)
|
||||
#
|
||||
self.input_composite_axes = input_composite_axes
|
||||
self.output_composite_axes = result_axes_grouping
|
||||
self.elementary_axes_lengths = list(axis_name2known_length.values())
|
||||
self.axes_permutation = axes_permutation
|
||||
|
||||
@functools.lru_cache(maxsize=1024)
|
||||
def reconstruct_from_shape(self, shape):
|
||||
if len(shape) != len(self.input_composite_axes):
|
||||
raise ValueError(
|
||||
"Expected {} dimensions, got {}".format(
|
||||
len(self.input_composite_axes), len(shape)
|
||||
)
|
||||
)
|
||||
axes_lengths = list(self.elementary_axes_lengths)
|
||||
for input_axis, (known_axes, unknown_axes) in enumerate(
|
||||
self.input_composite_axes
|
||||
):
|
||||
length = shape[input_axis]
|
||||
known_product = 1
|
||||
for axis in known_axes:
|
||||
known_product *= axes_lengths[axis]
|
||||
if len(unknown_axes) == 0:
|
||||
if (
|
||||
isinstance(length, int)
|
||||
and isinstance(known_product, int)
|
||||
and length != known_product
|
||||
):
|
||||
raise ValueError(
|
||||
"Shape mismatch, {} != {}".format(length, known_product)
|
||||
)
|
||||
else:
|
||||
if (
|
||||
isinstance(length, int)
|
||||
and isinstance(known_product, int)
|
||||
and length % known_product != 0
|
||||
):
|
||||
raise ValueError(
|
||||
"Shape mismatch, can't divide axis of length {} in chunks of {}".format(
|
||||
length, known_product
|
||||
)
|
||||
)
|
||||
|
||||
(unknown_axis,) = unknown_axes
|
||||
axes_lengths[unknown_axis] = length // known_product
|
||||
# at this point all axes_lengths are computed (either have values or variables, but not Nones)
|
||||
final_shape = []
|
||||
for output_axis, grouping in enumerate(self.output_composite_axes):
|
||||
lengths = [axes_lengths[elementary_axis] for elementary_axis in grouping]
|
||||
final_shape.append(int(np.prod(lengths)))
|
||||
axes_reordering = self.axes_permutation
|
||||
return axes_lengths, axes_reordering, final_shape
|
||||
|
||||
@property
|
||||
def abstract_search_space(self):
|
||||
@ -46,10 +172,13 @@ class SuperReArrange(SuperModule):
|
||||
self.forward_raw(input)
|
||||
|
||||
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
|
||||
import pdb
|
||||
|
||||
pdb.set_trace()
|
||||
raise NotImplementedError
|
||||
init_shape, axes_reordering, final_shape = self.reconstruct_from_shape(
|
||||
tuple(input.shape)
|
||||
)
|
||||
tensor = torch.reshape(input, init_shape)
|
||||
tensor = tensor.permute(axes_reordering)
|
||||
tensor = torch.reshape(tensor, final_shape)
|
||||
return tensor
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
params = repr(self._pattern)
|
||||
|
@ -1,8 +1,6 @@
|
||||
opyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
||||
#####################################################
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.06 #
|
||||
#####################################################
|
||||
import math
|
||||
from functools import partial
|
||||
from typing import Optional, Text, List
|
||||
|
Loading…
Reference in New Issue
Block a user