Update LFNA version 1.0

This commit is contained in:
D-X-Y 2021-05-07 14:27:15 +08:00
parent 80aaac4dfa
commit 34560ad8d1
5 changed files with 120 additions and 40 deletions

View File

@ -86,9 +86,10 @@ def main(args):
input_dim=1,
output_dim=1,
act_cls="leaky_relu",
norm_cls="simple_norm",
mean=mean,
std=std,
norm_cls="identity",
# norm_cls="simple_norm",
# mean=mean,
# std=std,
)
model = get_model(dict(model_type="simple_mlp"), **model_kwargs)
# build optimizer

View File

@ -58,6 +58,8 @@ def main(args):
)
)
w_container_per_epoch = dict()
per_timestamp_time, start_time = AverageMeter(), time.time()
for i, idx in enumerate(to_evaluate_indexes):
@ -73,7 +75,6 @@ def main(args):
+ need_time
)
# train the same data
assert idx != 0
historical_x = env_info["{:}-x".format(idx)]
historical_y = env_info["{:}-y".format(idx)]
# build model
@ -82,9 +83,10 @@ def main(args):
input_dim=1,
output_dim=1,
act_cls="leaky_relu",
norm_cls="simple_norm",
mean=mean,
std=std,
norm_cls="identity",
# norm_cls="simple_norm",
# mean=mean,
# std=std,
)
model = get_model(dict(model_type="simple_mlp"), **model_kwargs)
# build optimizer
@ -137,6 +139,7 @@ def main(args):
save_path = logger.path(None) / "{:04d}-{:04d}.pth".format(
idx, env_info["total"]
)
w_container_per_epoch[idx] = model.get_w_container().no_grad_clone()
save_checkpoint(
{
"model_state_dict": model.state_dict(),
@ -151,6 +154,11 @@ def main(args):
per_timestamp_time.update(time.time() - start_time)
start_time = time.time()
save_checkpoint(
{"w_container_per_epoch": w_container_per_epoch},
logger.path(None) / "final-ckp.pth",
logger,
)
logger.log("-" * 200 + "\n")
logger.close()

View File

@ -39,9 +39,11 @@ class LFNAmlp:
self.delta_net.parameters(), lr=0.01, amsgrad=True
)
def adapt(self, model, criterion, w_container, xs, ys):
def adapt(self, model, criterion, w_container, seq_datasets):
w_container.requires_grad_(True)
containers = [w_container]
for idx, (x, y) in enumerate(zip(xs, ys)):
for idx, dataset in enumerate(seq_datasets):
x, y = dataset.x, dataset.y
y_hat = model.forward_with_container(x, containers[-1])
loss = criterion(y_hat, y)
gradients = torch.autograd.grad(loss, containers[-1].tensors)
@ -52,21 +54,30 @@ class LFNAmlp:
input_statistics = input_statistics.expand(flatten_w.numel(), -1)
delta_inputs = torch.cat((flatten_w, flatten_g, input_statistics), dim=-1)
delta = self.delta_net(delta_inputs).view(-1)
# delta = torch.clamp(delta, -0.5, 0.5)
delta = torch.clamp(delta, -0.5, 0.5)
unflatten_delta = containers[-1].unflatten(delta)
future_container = containers[-1].additive(unflatten_delta)
future_container = containers[-1].no_grad_clone().additive(unflatten_delta)
# future_container = containers[-1].additive(unflatten_delta)
containers.append(future_container)
# containers = containers[1:]
meta_loss = []
for idx, (x, y) in enumerate(zip(xs, ys)):
temp_containers = []
for idx, dataset in enumerate(seq_datasets):
if idx == 0:
continue
current_container = containers[idx]
y_hat = model.forward_with_container(x, current_container)
loss = criterion(y_hat, y)
y_hat = model.forward_with_container(dataset.x, current_container)
loss = criterion(y_hat, dataset.y)
meta_loss.append(loss)
temp_containers.append((dataset.timestamp, current_container, -loss.item()))
meta_loss = sum(meta_loss)
meta_loss.backward()
w_container.requires_grad_(False)
# meta_loss.backward()
# self.meta_optimizer.step()
return meta_loss, temp_containers
def step(self):
torch.nn.utils.clip_grad_norm_(self.delta_net.parameters(), 1.0)
self.meta_optimizer.step()
def zero_grad(self):
@ -74,6 +85,25 @@ class LFNAmlp:
self.delta_net.zero_grad()
class TimeData:
def __init__(self, timestamp, xs, ys):
self._timestamp = timestamp
self._xs = xs
self._ys = ys
@property
def x(self):
return self._xs
@property
def y(self):
return self._ys
@property
def timestamp(self):
return self._timestamp
class Population:
"""A population used to maintain models at different timestamps."""
@ -83,20 +113,29 @@ class Population:
def append(self, timestamp, model, score):
if timestamp in self._time2model:
raise ValueError("This timestamp has been added.")
self._time2model[timestamp] = model
if self._time2score[timestamp] > score:
return
self._time2model[timestamp] = model.no_grad_clone()
self._time2score[timestamp] = score
def query(self, timestamp):
closet_timestamp = None
for xtime, model in self._time2model.items():
if (
closet_timestamp is None
or timestamp - closet_timestamp >= timestamp - xtime
if closet_timestamp is None or (
xtime < timestamp and timestamp - closet_timestamp >= timestamp - xtime
):
closet_timestamp = xtime
return self._time2model[closet_timestamp], closet_timestamp
def debug_info(self, timestamps):
xstrs = []
for timestamp in timestamps:
if timestamp in self._time2score:
xstrs.append(
"{:04d}: {:.4f}".format(timestamp, self._time2score[timestamp])
)
return ", ".join(xstrs)
def main(args):
prepare_seed(args.rand_seed)
@ -125,21 +164,19 @@ def main(args):
base_model = get_model(
dict(model_type="simple_mlp"),
act_cls="leaky_relu",
norm_cls="simple_learn_norm",
mean=0,
std=1,
norm_cls="identity",
input_dim=1,
output_dim=1,
)
w_container = base_model.named_parameters_buffers()
w_container = base_model.get_w_container()
criterion = torch.nn.MSELoss()
print("There are {:} weights.".format(w_container.numel()))
adaptor = LFNAmlp(4, (50, 20), "leaky_relu")
pool = Population()
pool.append(0, w_container)
pool.append(0, w_container, -100)
# LFNA meta-training
per_epoch_time, start_time = AverageMeter(), time.time()
@ -153,22 +190,35 @@ def main(args):
+ need_time
)
adaptor.zero_grad()
debug_timestamp = set()
all_meta_losses = []
for ibatch in range(args.meta_batch):
sampled_timestamp = random.randint(0, train_time_bar)
query_w_container, query_timestamp = pool.query(sampled_timestamp)
# def adapt(self, model, w_container, xs, ys):
xs, ys = [], []
seq_datasets = []
# xs, ys = [], []
for it in range(sampled_timestamp, sampled_timestamp + args.max_seq):
xs.append(env_info["{:}-x".format(it)])
ys.append(env_info["{:}-y".format(it)])
adaptor.adapt(base_model, criterion, query_w_container, xs, ys)
import pdb
xs = env_info["{:}-x".format(it)]
ys = env_info["{:}-y".format(it)]
seq_datasets.append(TimeData(it, xs, ys))
temp_meta_loss, temp_containers = adaptor.adapt(
base_model, criterion, query_w_container, seq_datasets
)
all_meta_losses.append(temp_meta_loss)
for temp_time, temp_container, temp_score in temp_containers:
pool.append(temp_time, temp_container, temp_score)
debug_timestamp.add(temp_time)
meta_loss = torch.stack(all_meta_losses).mean()
meta_loss.backward()
adaptor.step()
pdb.set_trace()
print("-")
logger.log("")
debug_str = pool.debug_info(debug_timestamp)
logger.log("meta-loss: {:.4f}".format(meta_loss.item()))
per_timestamp_time.update(time.time() - start_time)
per_epoch_time.update(time.time() - start_time)
start_time = time.time()
logger.log("-" * 200 + "\n")
@ -192,7 +242,7 @@ if __name__ == "__main__":
parser.add_argument(
"--meta_batch",
type=int,
default=2,
default=5,
help="The batch size for the meta-model",
)
parser.add_argument(

View File

@ -23,7 +23,7 @@ lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from models.xcore import get_model
from datasets.synthetic_core import get_synthetic_env
from datasets.synthetic_example import create_example_v1
from utils.temp_sync import optimize_fn, evaluate_fn
@ -300,8 +300,20 @@ def compare_algs_v2(save_dir, alg_dir="./outputs/lfna-synthetic"):
alg_name2dir = OrderedDict()
alg_name2dir["Optimal"] = "use-same-timestamp"
alg_name2dir["Supervised Learning (History Data)"] = "use-all-past-data"
colors = ["r", "g"]
# alg_name2dir["Supervised Learning (History Data)"] = "use-all-past-data"
alg_name2all_containers = OrderedDict()
for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()):
ckp_path = Path(alg_dir) / xdir / "final-ckp.pth"
xdata = torch.load(ckp_path)
alg_name2all_containers[alg] = xdata["w_container_per_epoch"]
# load the basic model
model = get_model(
dict(model_type="simple_mlp"),
act_cls="leaky_relu",
norm_cls="identity",
input_dim=1,
output_dim=1,
)
alg2xs, alg2ys = defaultdict(list), defaultdict(list)
colors = ["r", "g"]
@ -323,6 +335,7 @@ def compare_algs_v2(save_dir, alg_dir="./outputs/lfna-synthetic"):
plot_scatter(cur_ax, allx, ally, "k", 0.99, linewidths, "Raw Data")
for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()):
"""
ckp_path = (
Path(alg_dir)
/ xdir
@ -330,8 +343,12 @@ def compare_algs_v2(save_dir, alg_dir="./outputs/lfna-synthetic"):
)
assert ckp_path.exists()
ckp_data = torch.load(ckp_path)
"""
with torch.no_grad():
predicts = ckp_data["model"](ori_allx)
# predicts = ckp_data["model"](ori_allx)
predicts = model.forward_with_container(
ori_allx, alg_name2all_containers[alg][idx]
)
predicts = predicts.cpu()
# keep data
metric = MSEMetric()

View File

@ -55,6 +55,10 @@ class TensorContainer:
)
return result
def requires_grad_(self, requires_grad=True):
for tensor in self._tensors:
tensor.requires_grad_(requires_grad)
@property
def tensors(self):
return self._tensors
@ -162,7 +166,7 @@ class SuperModule(abc.ABC, nn.Module):
)
self._abstract_child = abstract_child
def named_parameters_buffers(self):
def get_w_container(self):
container = TensorContainer()
for name, param in self.named_parameters():
container.append(name, param, True)