re-organize NATS-Bench

This commit is contained in:
D-X-Y 2020-08-18 06:29:30 +00:00
parent ffd23a6cbd
commit 3529b993ff
10 changed files with 102 additions and 153 deletions

View File

@ -67,7 +67,8 @@ At the moment, this project provides the following algorithms and scripts to run
<tr> <!-- (7-th row) -->
<td align="center" valign="middle"> ... </td>
<td align="center" valign="middle"> ENAS / REA / REINFORCE / BOHB </td>
<td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> </td>
<td align="center" valign="middle"> Please check the original papers </td>
<td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NATS-Bench.md">NATS-Bench.md</a> </td>
</tr>
<tr> <!-- (start second block) -->
<td rowspan="1" align="center" valign="middle" halign="middle"> HPO </td>

View File

@ -59,10 +59,17 @@
<td align="center" valign="middle"> <a href="https://openreview.net/forum?id=HJxyZkBKDr"> NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search</a> </td>
<td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> </td>
</tr>
<tr> <!-- (6-th row) -->
<td align="center" valign="middle"> NATS-Bench </td>
<td align="center" valign="middle"> <a href="https://xuanyidong.com/assets/projects/NATS-Bench"> NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size</a> </td>
<td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NATS-Bench.md">NATS-Bench.md</a> </td>
</tr>
<tr> <!-- (6-th row) -->
<td align="center" valign="middle"> ... </td>
<td align="center" valign="middle"> ENAS / REA / REINFORCE / BOHB </td>
<td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> </td>
<td align="center" valign="middle"> Please check the original papers. </td>
<td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NATS-Bench.md">NATS-Bench.md</a> </td>
</tr>
<tr> <!-- (start second block) -->
<td rowspan="1" align="center" valign="middle" halign="middle"> HPO </td>

View File

@ -7,11 +7,23 @@ We analyze the validity of our benchmark in terms of various criteria and perfor
We also show the versatility of NATS-Bench by benchmarking 13 recent state-of-the-art NAS algorithms on it. All logs and diagnostic information trained using the same setup for each candidate are provided.
This facilitates a much larger community of researchers to focus on developing better NAS algorithms in a more comparable and computationally effective environment.
**coming soon!**
## How to Use NATS-Bench
## The Procedure of Creating NATS-Bench
1, train all architecture candidate in the size search space with 90 epochs and use the random seed of `777`.
```
bash ./scripts/NATS-Bench/train-shapes.sh 00000-32767 90 777
```
The checkpoint of all candidates are located at `output/NATS-Bench-size` by default
## To Reproduce 13 Baseline NAS Algorithms in NAS-Bench-201
### Reproduce NAS methods on the topology search space
@ -50,6 +62,7 @@ python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORC
### Reproduce NAS methods on the size search space
### Final Discovered Architectures for Each Algorithm
The architecture index can be found by use `api.query_index_by_arch(architecture_string)`.

View File

@ -1,8 +1,8 @@
###############################################################
# NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) #
###############################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
###############################################################
##############################################################################
# NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size #
##############################################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.07 #
##############################################################################
import os, sys, time, torch, argparse
from typing import List, Text, Dict, Any
from PIL import ImageFile
@ -189,9 +189,9 @@ def filter_indexes(xlist, mode, save_dir, seeds):
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='NAS-Bench-X', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser = argparse.ArgumentParser(description='NATS-Bench (size search space)', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--mode', type=str, required=True, choices=['new', 'cover'], help='The script mode.')
parser.add_argument('--save_dir', type=str, default='output/NAS-BENCH-202', help='Folder to save checkpoints and log.')
parser.add_argument('--save_dir', type=str, default='output/NATS-Bench-size', help='Folder to save checkpoints and log.')
parser.add_argument('--candidateC', type=int, nargs='+', default=[8, 16, 24, 32, 40, 48, 56, 64], help='.')
parser.add_argument('--num_layers', type=int, default=5, help='The number of layers in a network.')
parser.add_argument('--check_N', type=int, default=32768, help='For safety.')
@ -206,10 +206,12 @@ if __name__ == '__main__':
args = parser.parse_args()
nets = traverse_net(args.candidateC, args.num_layers)
if len(nets) != args.check_N: raise ValueError('Pre-num-check failed : {:} vs {:}'.format(len(nets), args.check_N))
if len(nets) != args.check_N:
raise ValueError('Pre-num-check failed : {:} vs {:}'.format(len(nets), args.check_N))
opt_config = './configs/nas-benchmark/hyper-opts/{:}E.config'.format(args.hyper)
if not os.path.isfile(opt_config): raise ValueError('{:} is not a file.'.format(opt_config))
if not os.path.isfile(opt_config):
raise ValueError('{:} is not a file.'.format(opt_config))
save_dir = Path(args.save_dir) / 'raw-data-{:}'.format(args.hyper)
save_dir.mkdir(parents=True, exist_ok=True)
if not isinstance(args.srange, str):
@ -218,7 +220,8 @@ if __name__ == '__main__':
to_evaluate_indexes = set()
for srange in srangestr.split(','):
srange = srange.split('-')
if len(srange) != 2: raise ValueError('invalid srange : {:}'.format(srange))
if len(srange) != 2:
raise ValueError('invalid srange : {:}'.format(srange))
assert len(srange[0]) == len(srange[1]) == 5, 'invalid srange : {:}'.format(srange)
srange = (int(srange[0]), int(srange[1]))
if not (0 <= srange[0] <= srange[1] < args.check_N):
@ -226,10 +229,12 @@ if __name__ == '__main__':
for i in range(srange[0], srange[1]+1):
to_evaluate_indexes.add(i)
assert len(args.seeds) > 0, 'invalid length of seeds args: {:}'.format(args.seeds)
if not len(args.seeds):
raise ValueError('invalid length of seeds args: {:}'.format(args.seeds))
if not (len(args.datasets) == len(args.xpaths) == len(args.splits)):
raise ValueError('invalid infos : {:} vs {:} vs {:}'.format(len(args.datasets), len(args.xpaths), len(args.splits)))
assert args.workers > 0, 'invalid number of workers : {:}'.format(args.workers)
if args.workers <= 0:
raise ValueError('invalid number of workers : {:}'.format(args.workers))
target_indexes = filter_indexes(to_evaluate_indexes, args.mode, save_dir, args.seeds)
@ -239,4 +244,3 @@ if __name__ == '__main__':
torch.set_num_threads(args.workers)
main(save_dir, args.workers, args.datasets, args.xpaths, args.splits, tuple(args.seeds), nets, opt_config, target_indexes, args.mode == 'cover')

View File

@ -1,10 +1,10 @@
###############################################################
# NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) #
###############################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.01 #
###############################################################
# Usage: python exps/NAS-Bench-201/xshape-file.py --mode check
###############################################################
##############################################################################
# NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size #
##############################################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.01 #
##############################################################################
# Usage: python exps/NATS-Bench/sss-file-manager.py --mode check #
##############################################################################
import os, sys, time, torch, argparse
from typing import List, Text, Dict, Any
from shutil import copyfile
@ -55,9 +55,9 @@ def copy_data(source_dir, target_dir, meta_path):
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='NAS-Bench-X', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser = argparse.ArgumentParser(description='NATS-Bench (size search space) file manager.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--mode', type=str, required=True, choices=['check', 'copy'], help='The script mode.')
parser.add_argument('--save_dir', type=str, default='output/NAS-BENCH-202', help='Folder to save checkpoints and log.')
parser.add_argument('--save_dir', type=str, default='output/NATS-Bench-size', help='Folder to save checkpoints and log.')
parser.add_argument('--check_N', type=int, default=32768, help='For safety.')
# use for train the model
args = parser.parse_args()

View File

@ -25,7 +25,7 @@ else
data_path="$TORCH_HOME/cifar.python/ImageNet16"
fi
save_dir=./output/search-cell-${space}/GDAS-${dataset}-BN${track_running_stats}
save_dir=./output/search-cell-${space}/GDAS-FRC-${dataset}-BN${track_running_stats}
OMP_NUM_THREADS=4 python ./exps/algos/GDAS.py \
--save_dir ${save_dir} \

View File

@ -1,36 +0,0 @@
#!/bin/bash
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.01 #
#####################################################
# bash ./scripts-search/X-X/train-shapes-01.sh 0 4
echo script name: $0
echo $# arguments
if [ "$#" -ne 2 ] ;then
echo "Input illegal number of parameters " $#
echo "Need 2 parameters for hyper-parameters-opt-file, and seeds"
exit 1
fi
if [ "$TORCH_HOME" = "" ]; then
echo "Must set TORCH_HOME envoriment variable for data dir saving"
exit 1
else
echo "TORCH_HOME : $TORCH_HOME"
fi
srange=00000-32767
opt=01
all_seeds=777
cpus=4
save_dir=./output/NAS-BENCH-202/
SLURM_PROCID=$1 SLURM_NTASKS=$2 OMP_NUM_THREADS=${cpus} python exps/NAS-Bench-201/xshapes.py \
--mode new --srange ${srange} --hyper ${opt} --save_dir ${save_dir} \
--datasets cifar10 cifar10 cifar100 ImageNet16-120 \
--splits 1 0 0 0 \
--xpaths $TORCH_HOME/cifar.python \
$TORCH_HOME/cifar.python \
$TORCH_HOME/cifar.python \
$TORCH_HOME/cifar.python/ImageNet16 \
--workers ${cpus} \
--seeds ${all_seeds}

View File

@ -1,43 +0,0 @@
#!/bin/bash
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.01 #
#####################################################
# SLURM_PROCID=0 SLURM_NTASKS=6 bash ./scripts-search/X-X/train-shapes-v2.sh 12 777
#
# SLURM_PROCID=0 SLURM_NTASKS=4 bash ./scripts-search/X-X/train-shapes.sh 30000-32767 90 777
# SLURM_PROCID=0 SLURM_NTASKS=4 bash ./scripts-search/X-X/train-shapes.sh 00000-09999 90 777
#
echo script name: $0
echo $# arguments
if [ "$#" -ne 2 ] ;then
echo "Input illegal number of parameters " $#
echo "Need 2 parameters for hyper-parameters-opt-file, and seeds"
exit 1
fi
if [ "$TORCH_HOME" = "" ]; then
echo "Must set TORCH_HOME envoriment variable for data dir saving"
exit 1
else
echo "TORCH_HOME : $TORCH_HOME"
fi
#srange=01000-03999,04050-05000,06000-09000,11000-14500,15000-18500,20000-23500,25000-27500,29000-30000
#srange=00000-00999,04000-04049,05001-05999,09001-10999,14501-14999,18501-19999,23501-24999,27501-28999,30001-32767
#srange=00000-09999
srange=10000-29999
opt=$1
all_seeds=$2
cpus=4
save_dir=./output/NAS-BENCH-202/
OMP_NUM_THREADS=${cpus} python exps/NAS-Bench-201/xshapes.py \
--mode new --srange ${srange} --hyper ${opt} --save_dir ${save_dir} \
--datasets cifar10 cifar10 cifar100 ImageNet16-120 \
--splits 1 0 0 0 \
--xpaths $TORCH_HOME/cifar.python \
$TORCH_HOME/cifar.python \
$TORCH_HOME/cifar.python \
$TORCH_HOME/cifar.python/ImageNet16 \
--workers ${cpus} \
--seeds ${all_seeds}

View File

@ -1,49 +0,0 @@
#!/bin/bash
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.01 #
#####################################################
# [mars6] CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/X-X/train-shapes.sh 00000-05000 12 777
# [mars6] bash ./scripts-search/X-X/train-shapes.sh 05001-10000 12 777
# [mars20] bash ./scripts-search/X-X/train-shapes.sh 10001-14500 12 777
# [mars20] bash ./scripts-search/X-X/train-shapes.sh 14501-18000 12 777
# [saturn4] bash ./scripts-search/X-X/train-shapes.sh 18001-19500 12 777
# [saturn4] bash ./scripts-search/X-X/train-shapes.sh 19501-23500 12 777
# [saturn4] bash ./scripts-search/X-X/train-shapes.sh 23501-27500 12 777
# [saturn4] bash ./scripts-search/X-X/train-shapes.sh 27501-30000 12 777
# [x] bash ./scripts-search/X-X/train-shapes.sh 30001-32767 12 777
#
# CUDA_VISIBLE_DEVICES=2 bash ./scripts-search/X-X/train-shapes.sh 01000-03999,04050-05000,06000-09000,11000-14500,15000-18500,20000-23500,25000-27500,29000-30000 12 777
# SLURM_PROCID=1 SLURM_NTASKS=5 bash ./scripts-search/X-X/train-shapes.sh 01000-03999,04050-05000,06000-09000,11000-14500,15000-18500,20000-23500,25000-27500,29000-30000 90 777
# [GCP] bash ./scripts-search/X-X/train-shapes.sh 00000-09999 90 777
# [UTS] bash ./scripts-search/X-X/train-shapes.sh 30000-32767 90 777
echo script name: $0
echo $# arguments
if [ "$#" -ne 3 ] ;then
echo "Input illegal number of parameters " $#
echo "Need 3 parameters for start-and-end, hyper-parameters-opt-file, and seeds"
exit 1
fi
if [ "$TORCH_HOME" = "" ]; then
echo "Must set TORCH_HOME envoriment variable for data dir saving"
exit 1
else
echo "TORCH_HOME : $TORCH_HOME"
fi
srange=$1
opt=$2
all_seeds=$3
cpus=4
save_dir=./output/NAS-BENCH-202/
OMP_NUM_THREADS=${cpus} python exps/NAS-Bench-201/xshapes.py \
--mode new --srange ${srange} --hyper ${opt} --save_dir ${save_dir} \
--datasets cifar10 cifar10 cifar100 ImageNet16-120 \
--splits 1 0 0 0 \
--xpaths $TORCH_HOME/cifar.python \
$TORCH_HOME/cifar.python \
$TORCH_HOME/cifar.python \
$TORCH_HOME/cifar.python/ImageNet16 \
--workers ${cpus} \
--seeds ${all_seeds}

View File

@ -0,0 +1,52 @@
#!/bin/bash
##############################################################################
# NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size #
##############################################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.01 #
##############################################################################
# CUDA_VISIBLE_DEVICES=0 bash scripts/NATS-Bench/train-shapes.sh 00000-05000 12 777
# bash ./scripts/NATS-Bench/train-shapes.sh 05001-10000 12 777
# bash ./scripts/NATS-Bench/train-shapes.sh 10001-14500 12 777
# bash ./scripts/NATS-Bench/train-shapes.sh 14501-18000 12 777
# bash ./scripts/NATS-Bench/train-shapes.sh 18001-19500 12 777
# bash ./scripts/NATS-Bench/train-shapes.sh 19501-23500 12 777
# bash ./scripts/NATS-Bench/train-shapes.sh 23501-27500 12 777
# bash ./scripts/NATS-Bench/train-shapes.sh 27501-30000 12 777
# bash ./scripts/NATS-Bench/train-shapes.sh 30001-32767 12 777
#
# CUDA_VISIBLE_DEVICES=2 bash ./scripts/NATS-Bench/train-shapes.sh 01000-03999,04050-05000,06000-09000,11000-14500,15000-18500,20000-23500,25000-27500,29000-30000 12 777
# SLURM_PROCID=1 SLURM_NTASKS=5 bash ./scripts/NATS-Bench/train-shapes.sh 01000-03999,04050-05000,06000-09000,11000-14500,15000-18500,20000-23500,25000-27500,29000-30000 90 777
# [GCP] bash ./scripts/NATS-Bench/train-shapes.sh 00000-09999 90 777
# [UTS] bash ./scripts/NATS-Bench/train-shapes.sh 30000-32767 90 777
##############################################################################
echo script name: $0
echo $# arguments
if [ "$#" -ne 3 ] ;then
echo "Input illegal number of parameters " $#
echo "Need 3 parameters for start-and-end, hyper-parameters-opt-file, and seeds"
exit 1
fi
if [ "$TORCH_HOME" = "" ]; then
echo "Must set TORCH_HOME envoriment variable for data dir saving"
exit 1
else
echo "TORCH_HOME : $TORCH_HOME"
fi
srange=$1
opt=$2
all_seeds=$3
cpus=4
save_dir=./output/NATS-Bench-size/
OMP_NUM_THREADS=${cpus} python exps/NATS-Bench/main-sss.py \
--mode new --srange ${srange} --hyper ${opt} --save_dir ${save_dir} \
--datasets cifar10 cifar10 cifar100 ImageNet16-120 \
--splits 1 0 0 0 \
--xpaths $TORCH_HOME/cifar.python \
$TORCH_HOME/cifar.python \
$TORCH_HOME/cifar.python \
$TORCH_HOME/cifar.python/ImageNet16 \
--workers ${cpus} \
--seeds ${all_seeds}