Upgrade spaces and add more tests

This commit is contained in:
D-X-Y 2021-03-18 15:04:14 +08:00
parent 85ee0ad4eb
commit 38409e602f
12 changed files with 386 additions and 84 deletions

View File

@ -24,6 +24,16 @@ jobs:
with:
python-version: ${{ matrix.python-version }}
- name: Lint with Black
run: |
python -m pip install black
python --version
python -m black --version
echo $PWD ; ls
python -m black ./tests -l 88 --check --diff --verbose
python -m black ./lib/spaces -l 88 --check --diff --verbose
python -m black ./lib/trade_models -l 88 --check --diff --verbose
- name: Test Search Space
run: |
python -m pip install pytest

View File

@ -154,7 +154,7 @@ If you want to contribute to this repo, please see [CONTRIBUTING.md](.github/CON
Besides, please follow [CODE-OF-CONDUCT.md](.github/CODE-OF-CONDUCT.md).
We use [`black`](https://github.com/psf/black) for Python code formatter.
Please use `black . -l 120`.
Please use `black . -l 88`.
# License
The entire codebase is under the [MIT license](LICENSE.md).

View File

@ -1,7 +1,43 @@
import torch.nn as nn
from torch.nn.parameter import Parameter
from typing import Optional
class MLP(nn.Module):
class Linear(nn.Module):
"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`
"""
__constants__ = ['in_features', 'out_features']
in_features: int
out_features: int
weight: Tensor
def __init__(self, in_features: int, out_features: int, bias: bool = True) -> None:
super(Linear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.Tensor(out_features, in_features))
if bias:
self.bias = Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self) -> None:
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)
def forward(self, input: Tensor) -> Tensor:
return F.linear(input, self.weight, self.bias)
def extra_repr(self) -> str:
return 'in_features={}, out_features={}, bias={}'.format(
self.in_features, self.out_features, self.bias is not None
)
class SuperMLP(nn.Module):
# MLP: FC -> Activation -> Drop -> FC -> Drop
def __init__(self, in_features, hidden_features: Optional[int] = None,
out_features: Optional[int] = None,

View File

@ -6,3 +6,5 @@
from .basic_space import Categorical
from .basic_space import Continuous
from .basic_op import has_categorical
from .basic_op import has_continuous

16
lib/spaces/basic_op.py Normal file
View File

@ -0,0 +1,16 @@
from spaces.basic_space import Space
from spaces.basic_space import _EPS
def has_categorical(space_or_value, x):
if isinstance(space_or_value, Space):
return space_or_value.has(x)
else:
return space_or_value == x
def has_continuous(space_or_value, x):
if isinstance(space_or_value, Space):
return space_or_value.has(x)
else:
return abs(space_or_value - x) <= _EPS

View File

@ -4,28 +4,65 @@
import abc
import math
import copy
import random
import numpy as np
from typing import Optional
_EPS = 1e-9
class Space(metaclass=abc.ABCMeta):
"""Basic search space describing the set of possible candidate values for hyperparameter.
All search space must inherit from this basic class.
"""
@abc.abstractmethod
def random(self, recursion=True):
raise NotImplementedError
@abc.abstractproperty
def determined(self):
raise NotImplementedError
@abc.abstractmethod
def __repr__(self):
raise NotImplementedError
@abc.abstractmethod
def has(self, x):
"""Check whether x is in this search space."""
assert not isinstance(
x, Space
), "The input value itself can not be a search space."
def copy(self):
return copy.deepcopy(self)
class Categorical(Space):
"""A space contains the categorical values.
It can be a nested space, which means that the candidate in this space can also be a search space.
"""
def __init__(self, *data, default: Optional[int] = None):
self._candidates = [*data]
self._default = default
assert self._default is None or 0 <= self._default < len(self._candidates), "default >= {:}".format(
len(self._candidates)
)
assert self._default is None or 0 <= self._default < len(
self._candidates
), "default >= {:}".format(len(self._candidates))
assert len(self) > 0, "Please provide at least one candidate"
@property
def determined(self):
if len(self) == 1:
return (
not isinstance(self._candidates[0], Space)
or self._candidates[0].determined
)
else:
return False
def __getitem__(self, index):
return self._candidates[index]
@ -38,6 +75,15 @@ class Categorical(Space):
name=self.__class__.__name__, cs=self._candidates, default=self._default
)
def has(self, x):
super().has(x)
for candidate in self._candidates:
if isinstance(candidate, Space) and candidate.has(x):
return True
elif candidate == x:
return True
return False
def random(self, recursion=True):
sample = random.choice(self._candidates)
if recursion and isinstance(sample, Space):
@ -46,12 +92,35 @@ class Categorical(Space):
return sample
np_float_types = (np.float16, np.float32, np.float64)
np_int_types = (
np.uint8,
np.int8,
np.uint16,
np.int16,
np.uint32,
np.int32,
np.uint64,
np.int64,
)
class Continuous(Space):
def __init__(self, lower: float, upper: float, default: Optional[float] = None, log: bool = False):
"""A space contains the continuous values."""
def __init__(
self,
lower: float,
upper: float,
default: Optional[float] = None,
log: bool = False,
eps: float = _EPS,
):
self._lower = lower
self._upper = upper
self._default = default
self._log_scale = log
self._eps = eps
@property
def lower(self):
@ -65,6 +134,10 @@ class Continuous(Space):
def default(self):
return self._default
@property
def determined(self):
return abs(self.lower - self.upper) <= self._eps
def __repr__(self):
return "{name:}(lower={lower:}, upper={upper:}, default_value={default:}, log_scale={log:})".format(
name=self.__class__.__name__,
@ -74,6 +147,23 @@ class Continuous(Space):
log=self._log_scale,
)
def convert(self, x):
if isinstance(x, np_float_types) and x.size == 1:
return float(x), True
elif isinstance(x, np_int_types) and x.size == 1:
return float(x), True
elif isinstance(x, int):
return float(x), True
elif isinstance(x, float):
return float(x), True
else:
return None, False
def has(self, x):
super().has(x)
converted_x, success = self.convert(x)
return success and self.lower <= converted_x <= self.upper
def random(self, recursion=True):
del recursion
if self._log_scale:

View File

@ -1,6 +1,8 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021 #
##################################################
# Use noise as prediction #
##################################################
from __future__ import division
from __future__ import print_function
@ -27,7 +29,11 @@ class NAIVE_V1(Model):
self.d_feat = d_feat
self.seed = seed
self.logger.info("NAIVE-V1 parameters setting: d_feat={:}, seed={:}".format(self.d_feat, self.seed))
self.logger.info(
"NAIVE-V1 parameters setting: d_feat={:}, seed={:}".format(
self.d_feat, self.seed
)
)
if self.seed is not None:
random.seed(self.seed)
@ -49,7 +55,9 @@ class NAIVE_V1(Model):
def model(self, x):
num = len(x)
return np.random.normal(loc=self._mean, scale=self._std, size=num).astype(x.dtype)
return np.random.normal(loc=self._mean, scale=self._std, size=num).astype(
x.dtype
)
def fit(self, dataset: DatasetH):
def _prepare_dataset(df_data):
@ -71,9 +79,15 @@ class NAIVE_V1(Model):
# df_train['feature']['CLOSE1'].values
# train_dataset['features'][:, -1]
masks = ~np.isnan(train_dataset["labels"])
self._mean, self._std = np.mean(train_dataset["labels"][masks]), np.std(train_dataset["labels"][masks])
train_mse_loss = self.mse(self.model(train_dataset["features"]), train_dataset["labels"])
valid_mse_loss = self.mse(self.model(valid_dataset["features"]), valid_dataset["labels"])
self._mean, self._std = np.mean(train_dataset["labels"][masks]), np.std(
train_dataset["labels"][masks]
)
train_mse_loss = self.mse(
self.model(train_dataset["features"]), train_dataset["labels"]
)
valid_mse_loss = self.mse(
self.model(valid_dataset["features"]), valid_dataset["labels"]
)
self.logger.info("Training MSE loss: {:}".format(train_mse_loss))
self.logger.info("Validation MSE loss: {:}".format(valid_mse_loss))
self.fitted = True

View File

@ -29,7 +29,11 @@ class NAIVE_V2(Model):
self.d_feat = d_feat
self.seed = seed
self.logger.info("NAIVE parameters setting: d_feat={:}, seed={:}".format(self.d_feat, self.seed))
self.logger.info(
"NAIVE parameters setting: d_feat={:}, seed={:}".format(
self.d_feat, self.seed
)
)
if self.seed is not None:
random.seed(self.seed)
@ -79,8 +83,12 @@ class NAIVE_V2(Model):
)
# df_train['feature']['CLOSE1'].values
# train_dataset['features'][:, -1]
train_mse_loss = self.mse(self.model(train_dataset["features"]), train_dataset["labels"])
valid_mse_loss = self.mse(self.model(valid_dataset["features"]), valid_dataset["labels"])
train_mse_loss = self.mse(
self.model(train_dataset["features"]), train_dataset["labels"]
)
valid_mse_loss = self.mse(
self.model(valid_dataset["features"]), valid_dataset["labels"]
)
self.logger.info("Training MSE loss: {:}".format(train_mse_loss))
self.logger.info("Validation MSE loss: {:}".format(valid_mse_loss))
self.fitted = True

View File

@ -37,14 +37,22 @@ from qlib.data.dataset.handler import DataHandlerLP
DEFAULT_OPT_CONFIG = dict(
epochs=200, lr=0.001, batch_size=2000, early_stop=20, loss="mse", optimizer="adam", num_workers=4
epochs=200,
lr=0.001,
batch_size=2000,
early_stop=20,
loss="mse",
optimizer="adam",
num_workers=4,
)
class QuantTransformer(Model):
"""Transformer-based Quant Model"""
def __init__(self, net_config=None, opt_config=None, metric="", GPU=0, seed=None, **kwargs):
def __init__(
self, net_config=None, opt_config=None, metric="", GPU=0, seed=None, **kwargs
):
# Set logger.
self.logger = get_module_logger("QuantTransformer")
self.logger.info("QuantTransformer PyTorch version...")
@ -53,7 +61,9 @@ class QuantTransformer(Model):
self.net_config = net_config or DEFAULT_NET_CONFIG
self.opt_config = opt_config or DEFAULT_OPT_CONFIG
self.metric = metric
self.device = torch.device("cuda:{:}".format(GPU) if torch.cuda.is_available() and GPU >= 0 else "cpu")
self.device = torch.device(
"cuda:{:}".format(GPU) if torch.cuda.is_available() and GPU >= 0 else "cpu"
)
self.seed = seed
self.logger.info(
@ -84,11 +94,17 @@ class QuantTransformer(Model):
self.logger.info("model size: {:.3f} MB".format(count_parameters(self.model)))
if self.opt_config["optimizer"] == "adam":
self.train_optimizer = optim.Adam(self.model.parameters(), lr=self.opt_config["lr"])
self.train_optimizer = optim.Adam(
self.model.parameters(), lr=self.opt_config["lr"]
)
elif self.opt_config["optimizer"] == "adam":
self.train_optimizer = optim.SGD(self.model.parameters(), lr=self.opt_config["lr"])
self.train_optimizer = optim.SGD(
self.model.parameters(), lr=self.opt_config["lr"]
)
else:
raise NotImplementedError("optimizer {:} is not supported!".format(optimizer))
raise NotImplementedError(
"optimizer {:} is not supported!".format(optimizer)
)
self.fitted = False
self.model.to(self.device)
@ -111,7 +127,9 @@ class QuantTransformer(Model):
else:
raise ValueError("unknown metric `{:}`".format(self.metric))
def train_or_test_epoch(self, xloader, model, loss_fn, metric_fn, is_train, optimizer=None):
def train_or_test_epoch(
self, xloader, model, loss_fn, metric_fn, is_train, optimizer=None
):
if is_train:
model.train()
else:
@ -173,7 +191,11 @@ class QuantTransformer(Model):
)
save_dir = get_or_create_path(save_dir, return_dir=True)
self.logger.info("Fit procedure for [{:}] with save path={:}".format(self.__class__.__name__, save_dir))
self.logger.info(
"Fit procedure for [{:}] with save path={:}".format(
self.__class__.__name__, save_dir
)
)
def _internal_test(ckp_epoch=None, results_dict=None):
with torch.no_grad():
@ -186,8 +208,10 @@ class QuantTransformer(Model):
test_loss, test_score = self.train_or_test_epoch(
test_loader, self.model, self.loss_fn, self.metric_fn, False, None
)
xstr = "train-score={:.6f}, valid-score={:.6f}, test-score={:.6f}".format(
train_score, valid_score, test_score
xstr = (
"train-score={:.6f}, valid-score={:.6f}, test-score={:.6f}".format(
train_score, valid_score, test_score
)
)
if ckp_epoch is not None and isinstance(results_dict, dict):
results_dict["train"][ckp_epoch] = train_score
@ -199,18 +223,26 @@ class QuantTransformer(Model):
ckp_path = os.path.join(save_dir, "{:}.pth".format(self.__class__.__name__))
if os.path.exists(ckp_path):
ckp_data = torch.load(ckp_path)
stop_steps, best_score, best_epoch = ckp_data['stop_steps'], ckp_data['best_score'], ckp_data['best_epoch']
start_epoch, best_param = ckp_data['start_epoch'], ckp_data['best_param']
results_dict = ckp_data['results_dict']
self.model.load_state_dict(ckp_data['net_state_dict'])
self.train_optimizer.load_state_dict(ckp_data['opt_state_dict'])
stop_steps, best_score, best_epoch = (
ckp_data["stop_steps"],
ckp_data["best_score"],
ckp_data["best_epoch"],
)
start_epoch, best_param = ckp_data["start_epoch"], ckp_data["best_param"]
results_dict = ckp_data["results_dict"]
self.model.load_state_dict(ckp_data["net_state_dict"])
self.train_optimizer.load_state_dict(ckp_data["opt_state_dict"])
self.logger.info("Resume from existing checkpoint: {:}".format(ckp_path))
else:
stop_steps, best_score, best_epoch = 0, -np.inf, -1
start_epoch, best_param = 0, None
results_dict = dict(train=OrderedDict(), valid=OrderedDict(), test=OrderedDict())
results_dict = dict(
train=OrderedDict(), valid=OrderedDict(), test=OrderedDict()
)
_, eval_str = _internal_test(-1, results_dict)
self.logger.info("Training from scratch, metrics@start: {:}".format(eval_str))
self.logger.info(
"Training from scratch, metrics@start: {:}".format(eval_str)
)
for iepoch in range(start_epoch, self.opt_config["epochs"]):
self.logger.info(
@ -219,20 +251,35 @@ class QuantTransformer(Model):
)
)
train_loss, train_score = self.train_or_test_epoch(
train_loader, self.model, self.loss_fn, self.metric_fn, True, self.train_optimizer
train_loader,
self.model,
self.loss_fn,
self.metric_fn,
True,
self.train_optimizer,
)
self.logger.info(
"Training :: loss={:.6f}, score={:.6f}".format(train_loss, train_score)
)
self.logger.info("Training :: loss={:.6f}, score={:.6f}".format(train_loss, train_score))
current_eval_scores, eval_str = _internal_test(iepoch, results_dict)
self.logger.info("Evaluating :: {:}".format(eval_str))
if current_eval_scores["valid"] > best_score:
stop_steps, best_epoch, best_score = 0, iepoch, current_eval_scores["valid"]
stop_steps, best_epoch, best_score = (
0,
iepoch,
current_eval_scores["valid"],
)
best_param = copy.deepcopy(self.model.state_dict())
else:
stop_steps += 1
if stop_steps >= self.opt_config["early_stop"]:
self.logger.info("early stop at {:}-th epoch, where the best is @{:}".format(iepoch, best_epoch))
self.logger.info(
"early stop at {:}-th epoch, where the best is @{:}".format(
iepoch, best_epoch
)
)
break
save_info = dict(
net_config=self.net_config,
@ -247,9 +294,11 @@ class QuantTransformer(Model):
start_epoch=iepoch + 1,
)
torch.save(save_info, ckp_path)
self.logger.info("The best score: {:.6f} @ {:02d}-th epoch".format(best_score, best_epoch))
self.logger.info(
"The best score: {:.6f} @ {:02d}-th epoch".format(best_score, best_epoch)
)
self.model.load_state_dict(best_param)
_, eval_str = _internal_test('final', results_dict)
_, eval_str = _internal_test("final", results_dict)
self.logger.info("Reload the best parameter :: {:}".format(eval_str))
if self.use_gpu:

View File

@ -33,7 +33,15 @@ DEFAULT_NET_CONFIG = dict(
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
):
super(Attention, self).__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
@ -46,8 +54,16 @@ class Attention(nn.Module):
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = (
qkv[0],
qkv[1],
qkv[2],
) # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
@ -76,13 +92,25 @@ class Block(nn.Module):
super(Block, self).__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=mlp_drop
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=mlp_drop,
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = xlayers.DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.drop_path = (
xlayers.DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
)
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = xlayers.MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=mlp_drop)
self.mlp = xlayers.MLP(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=mlp_drop,
)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
@ -144,9 +172,13 @@ class TransformerModel(nn.Module):
self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim)
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=max_seq_len, dropout=pos_drop)
self.pos_embed = xlayers.PositionalEncoder(
d_model=embed_dim, max_seq_len=max_seq_len, dropout=pos_drop
)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, depth)
] # stochastic depth decay rule
self.blocks = nn.ModuleList(
[
Block(
@ -184,7 +216,9 @@ class TransformerModel(nn.Module):
batch, flatten_size = x.shape
feats = self.input_embed(x) # batch * 60 * 64
cls_tokens = self.cls_token.expand(batch, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
cls_tokens = self.cls_token.expand(
batch, -1, -1
) # stole cls_tokens impl from Phil Wang, thanks
feats_w_ct = torch.cat((cls_tokens, feats), dim=1)
feats_w_tp = self.pos_embed(feats_w_ct)

View File

@ -1,38 +0,0 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
#####################################################
import sys
import unittest
import pytest
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / "lib").resolve()
print("library path: {:}".format(lib_dir))
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from spaces import Categorical
from spaces import Continuous
class TestBasicSpace(unittest.TestCase):
def test_categorical(self):
space = Categorical(1, 2, 3, 4)
for i in range(4):
self.assertEqual(space[i], i + 1)
self.assertEqual("Categorical(candidates=[1, 2, 3, 4], default_index=None)", str(space))
def test_continuous(self):
space = Continuous(0, 1)
self.assertGreaterEqual(space.random(), 0)
self.assertGreaterEqual(1, space.random())
lower, upper = 1.5, 4.6
space = Continuous(lower, upper, log=False)
values = []
for i in range(100000):
x = space.random()
self.assertGreaterEqual(x, lower)
self.assertGreaterEqual(upper, x)
values.append(x)
self.assertAlmostEqual((lower + upper) / 2, sum(values) / len(values), places=2)

81
tests/test_basic_space.py Normal file
View File

@ -0,0 +1,81 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
#####################################################
import sys, random
import unittest
import pytest
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / "lib").resolve()
print("library path: {:}".format(lib_dir))
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from spaces import Categorical
from spaces import Continuous
class TestBasicSpace(unittest.TestCase):
"""Test the basic search spaces."""
def test_categorical(self):
space = Categorical(1, 2, 3, 4)
for i in range(4):
self.assertEqual(space[i], i + 1)
self.assertEqual(
"Categorical(candidates=[1, 2, 3, 4], default_index=None)", str(space)
)
def test_continuous(self):
random.seed(999)
space = Continuous(0, 1)
self.assertGreaterEqual(space.random(), 0)
self.assertGreaterEqual(1, space.random())
lower, upper = 1.5, 4.6
space = Continuous(lower, upper, log=False)
values = []
for i in range(1000000):
x = space.random()
self.assertGreaterEqual(x, lower)
self.assertGreaterEqual(upper, x)
values.append(x)
self.assertAlmostEqual((lower + upper) / 2, sum(values) / len(values), places=2)
self.assertEqual(
"Continuous(lower=1.5, upper=4.6, default_value=None, log_scale=False)",
str(space),
)
def test_determined_and_has(self):
# Test Non-nested Space
space = Categorical(1, 2, 3, 4)
self.assertFalse(space.determined)
self.assertTrue(space.has(2))
self.assertFalse(space.has(6))
space = Categorical(4)
self.assertTrue(space.determined)
space = Continuous(0.11, 0.12)
self.assertTrue(space.has(0.115))
self.assertFalse(space.has(0.1))
self.assertFalse(space.determined)
space = Continuous(0.11, 0.11)
self.assertTrue(space.determined)
# Test Nested Space
space_1 = Categorical(1, 2, 3, 4)
space_2 = Categorical(1)
nested_space = Categorical(space_1)
self.assertFalse(nested_space.determined)
self.assertTrue(nested_space.has(4))
nested_space = Categorical(space_2)
self.assertTrue(nested_space.determined)
# Test Nested Space 2
nested_space = Categorical(
Categorical(1, 2, 3),
Categorical(4, Categorical(5, 6, 7, Categorical(8, 9), 10), 11),
12,
)
for i in range(1, 13):
self.assertTrue(nested_space.has(i))