Update super-activation layers
This commit is contained in:
parent
0dbbc286c9
commit
4da19d6efe
@ -25,6 +25,7 @@ from xlayers import super_core
|
||||
|
||||
|
||||
from lfna_utils import lfna_setup, train_model, TimeData
|
||||
from lfna_models import HyperNet
|
||||
|
||||
|
||||
class LFNAmlp:
|
||||
@ -77,17 +78,40 @@ def main(args):
|
||||
nkey = "{:}-{:}".format(i, xkey)
|
||||
assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys()))
|
||||
train_time_bar = total_time // 2
|
||||
network = get_model(dict(model_type="simple_mlp"), **model_kwargs)
|
||||
|
||||
criterion = torch.nn.MSELoss()
|
||||
logger.log("There are {:} weights.".format(network.get_w_container().numel()))
|
||||
logger.log("There are {:} weights.".format(model.get_w_container().numel()))
|
||||
|
||||
adaptor = LFNAmlp(args.meta_seq, (200, 200), "leaky_relu", criterion)
|
||||
|
||||
# pre-train the model
|
||||
init_dataset = TimeData(0, env_info["0-x"], env_info["0-y"])
|
||||
init_loss = train_model(network, init_dataset, args.init_lr, args.epochs)
|
||||
dataset = init_dataset = TimeData(0, env_info["0-x"], env_info["0-y"])
|
||||
|
||||
shape_container = model.get_w_container().to_shape_container()
|
||||
hypernet = HyperNet(shape_container, 16)
|
||||
|
||||
optimizer = torch.optim.Adam(hypernet.parameters(), lr=args.init_lr, amsgrad=True)
|
||||
|
||||
best_loss, best_param = None, None
|
||||
for _iepoch in range(args.epochs):
|
||||
container = hypernet(None)
|
||||
|
||||
preds = model.forward_with_container(dataset.x, container)
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(preds, dataset.y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
# save best
|
||||
if best_loss is None or best_loss > loss.item():
|
||||
best_loss = loss.item()
|
||||
best_param = copy.deepcopy(model.state_dict())
|
||||
print("hyper-net : best={:.4f}".format(best_loss))
|
||||
|
||||
init_loss = train_model(model, init_dataset, args.init_lr, args.epochs)
|
||||
logger.log("The pre-training loss is {:.4f}".format(init_loss))
|
||||
import pdb
|
||||
|
||||
pdb.set_trace()
|
||||
|
||||
all_past_containers = []
|
||||
ground_truth_path = (
|
50
exps/LFNA/backup/lfna_models.py
Normal file
50
exps/LFNA/backup/lfna_models.py
Normal file
@ -0,0 +1,50 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
import copy
|
||||
import torch
|
||||
|
||||
from xlayers import super_core
|
||||
from xlayers import trunc_normal_
|
||||
from models.xcore import get_model
|
||||
|
||||
|
||||
class HyperNet(super_core.SuperModule):
|
||||
def __init__(self, shape_container, input_embeding, return_container=True):
|
||||
super(HyperNet, self).__init__()
|
||||
self._shape_container = shape_container
|
||||
self._num_layers = len(shape_container)
|
||||
self._numel_per_layer = []
|
||||
for ilayer in range(self._num_layers):
|
||||
self._numel_per_layer.append(shape_container[ilayer].numel())
|
||||
|
||||
self.register_parameter(
|
||||
"_super_layer_embed",
|
||||
torch.nn.Parameter(torch.Tensor(self._num_layers, input_embeding)),
|
||||
)
|
||||
trunc_normal_(self._super_layer_embed, std=0.02)
|
||||
|
||||
model_kwargs = dict(
|
||||
input_dim=input_embeding,
|
||||
output_dim=max(self._numel_per_layer),
|
||||
hidden_dim=input_embeding * 4,
|
||||
act_cls="sigmoid",
|
||||
norm_cls="identity",
|
||||
)
|
||||
self._generator = get_model(dict(model_type="simple_mlp"), **model_kwargs)
|
||||
self._return_container = return_container
|
||||
print("generator: {:}".format(self._generator))
|
||||
|
||||
def forward_raw(self, input):
|
||||
weights = self._generator(self._super_layer_embed)
|
||||
if self._return_container:
|
||||
weights = torch.split(weights, 1)
|
||||
return self._shape_container.translate(weights)
|
||||
else:
|
||||
return weights
|
||||
|
||||
def forward_candidate(self, input):
|
||||
raise NotImplementedError
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return "(_super_layer_embed): {:}".format(list(self._super_layer_embed.shape))
|
@ -37,4 +37,4 @@ def get_model(config: Dict[Text, Any], **kwargs):
|
||||
)
|
||||
else:
|
||||
raise TypeError("Unkonwn model type: {:}".format(model_type))
|
||||
return model
|
||||
return model
|
@ -38,6 +38,46 @@ class SuperReLU(SuperModule):
|
||||
return "inplace=True" if self._inplace else ""
|
||||
|
||||
|
||||
class SuperGELU(SuperModule):
|
||||
"""Applies a the Gaussian Error Linear Units function element-wise."""
|
||||
|
||||
def __init__(self) -> None:
|
||||
super(SuperGELU, self).__init__()
|
||||
|
||||
@property
|
||||
def abstract_search_space(self):
|
||||
return spaces.VirtualNode(id(self))
|
||||
|
||||
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
|
||||
return self.forward_raw(input)
|
||||
|
||||
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
|
||||
return F.gelu(input)
|
||||
|
||||
def forward_with_container(self, input, container, prefix=[]):
|
||||
return self.forward_raw(input)
|
||||
|
||||
|
||||
class SuperSigmoid(SuperModule):
|
||||
"""Applies a the Sigmoid function element-wise."""
|
||||
|
||||
def __init__(self) -> None:
|
||||
super(SuperSigmoid, self).__init__()
|
||||
|
||||
@property
|
||||
def abstract_search_space(self):
|
||||
return spaces.VirtualNode(id(self))
|
||||
|
||||
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
|
||||
return self.forward_raw(input)
|
||||
|
||||
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
|
||||
return torch.sigmoid(input)
|
||||
|
||||
def forward_with_container(self, input, container, prefix=[]):
|
||||
return self.forward_raw(input)
|
||||
|
||||
|
||||
class SuperLeakyReLU(SuperModule):
|
||||
"""https://pytorch.org/docs/stable/_modules/torch/nn/modules/activation.html#LeakyReLU"""
|
||||
|
||||
|
@ -28,9 +28,13 @@ from .super_transformer import SuperTransformerEncoderLayer
|
||||
from .super_activations import SuperReLU
|
||||
from .super_activations import SuperLeakyReLU
|
||||
from .super_activations import SuperTanh
|
||||
from .super_activations import SuperGELU
|
||||
from .super_activations import SuperSigmoid
|
||||
|
||||
super_name2activation = {
|
||||
"relu": SuperReLU,
|
||||
"sigmoid": SuperSigmoid,
|
||||
"gelu": SuperGELU,
|
||||
"leaky_relu": SuperLeakyReLU,
|
||||
"tanh": SuperTanh,
|
||||
}
|
||||
|
@ -11,128 +11,10 @@ from enum import Enum
|
||||
|
||||
import spaces
|
||||
|
||||
IntSpaceType = Union[int, spaces.Integer, spaces.Categorical]
|
||||
BoolSpaceType = Union[bool, spaces.Categorical]
|
||||
|
||||
|
||||
class LayerOrder(Enum):
|
||||
"""This class defines the enumerations for order of operation in a residual or normalization-based layer."""
|
||||
|
||||
PreNorm = "pre-norm"
|
||||
PostNorm = "post-norm"
|
||||
|
||||
|
||||
class SuperRunMode(Enum):
|
||||
"""This class defines the enumerations for Super Model Running Mode."""
|
||||
|
||||
FullModel = "fullmodel"
|
||||
Candidate = "candidate"
|
||||
Default = "fullmodel"
|
||||
|
||||
|
||||
class TensorContainer:
|
||||
"""A class to maintain both parameters and buffers for a model."""
|
||||
|
||||
def __init__(self):
|
||||
self._names = []
|
||||
self._tensors = []
|
||||
self._param_or_buffers = []
|
||||
self._name2index = dict()
|
||||
|
||||
def additive(self, tensors):
|
||||
result = TensorContainer()
|
||||
for index, name in enumerate(self._names):
|
||||
new_tensor = self._tensors[index] + tensors[index]
|
||||
result.append(name, new_tensor, self._param_or_buffers[index])
|
||||
return result
|
||||
|
||||
def create_container(self, tensors):
|
||||
result = TensorContainer()
|
||||
for index, name in enumerate(self._names):
|
||||
new_tensor = tensors[index]
|
||||
result.append(name, new_tensor, self._param_or_buffers[index])
|
||||
return result
|
||||
|
||||
def no_grad_clone(self):
|
||||
result = TensorContainer()
|
||||
with torch.no_grad():
|
||||
for index, name in enumerate(self._names):
|
||||
result.append(
|
||||
name, self._tensors[index].clone(), self._param_or_buffers[index]
|
||||
)
|
||||
return result
|
||||
|
||||
def requires_grad_(self, requires_grad=True):
|
||||
for tensor in self._tensors:
|
||||
tensor.requires_grad_(requires_grad)
|
||||
|
||||
def parameters(self):
|
||||
return self._tensors
|
||||
|
||||
@property
|
||||
def tensors(self):
|
||||
return self._tensors
|
||||
|
||||
def flatten(self, tensors=None):
|
||||
if tensors is None:
|
||||
tensors = self._tensors
|
||||
tensors = [tensor.view(-1) for tensor in tensors]
|
||||
return torch.cat(tensors)
|
||||
|
||||
def unflatten(self, tensor):
|
||||
tensors, s = [], 0
|
||||
for raw_tensor in self._tensors:
|
||||
length = raw_tensor.numel()
|
||||
x = torch.reshape(tensor[s : s + length], shape=raw_tensor.shape)
|
||||
tensors.append(x)
|
||||
s += length
|
||||
return tensors
|
||||
|
||||
def append(self, name, tensor, param_or_buffer):
|
||||
if not isinstance(tensor, torch.Tensor):
|
||||
raise TypeError(
|
||||
"The input tensor must be torch.Tensor instead of {:}".format(
|
||||
type(tensor)
|
||||
)
|
||||
)
|
||||
self._names.append(name)
|
||||
self._tensors.append(tensor)
|
||||
self._param_or_buffers.append(param_or_buffer)
|
||||
assert name not in self._name2index, "The [{:}] has already been added.".format(
|
||||
name
|
||||
)
|
||||
self._name2index[name] = len(self._names) - 1
|
||||
|
||||
def query(self, name):
|
||||
if not self.has(name):
|
||||
raise ValueError(
|
||||
"The {:} is not in {:}".format(name, list(self._name2index.keys()))
|
||||
)
|
||||
index = self._name2index[name]
|
||||
return self._tensors[index]
|
||||
|
||||
def has(self, name):
|
||||
return name in self._name2index
|
||||
|
||||
def has_prefix(self, prefix):
|
||||
for name, idx in self._name2index.items():
|
||||
if name.startswith(prefix):
|
||||
return name
|
||||
return False
|
||||
|
||||
def numel(self):
|
||||
total = 0
|
||||
for tensor in self._tensors:
|
||||
total += tensor.numel()
|
||||
return total
|
||||
|
||||
def __len__(self):
|
||||
return len(self._names)
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}({num} tensors)".format(
|
||||
name=self.__class__.__name__, num=len(self)
|
||||
)
|
||||
from .super_utils import IntSpaceType, BoolSpaceType
|
||||
from .super_utils import LayerOrder, SuperRunMode
|
||||
from .super_utils import TensorContainer
|
||||
from .super_utils import ShapeContainer
|
||||
|
||||
|
||||
class SuperModule(abc.ABC, nn.Module):
|
||||
|
222
lib/xlayers/super_utils.py
Normal file
222
lib/xlayers/super_utils.py
Normal file
@ -0,0 +1,222 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
||||
#####################################################
|
||||
|
||||
import abc
|
||||
import warnings
|
||||
from typing import Optional, Union, Callable
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from enum import Enum
|
||||
|
||||
import spaces
|
||||
|
||||
IntSpaceType = Union[int, spaces.Integer, spaces.Categorical]
|
||||
BoolSpaceType = Union[bool, spaces.Categorical]
|
||||
|
||||
|
||||
class LayerOrder(Enum):
|
||||
"""This class defines the enumerations for order of operation in a residual or normalization-based layer."""
|
||||
|
||||
PreNorm = "pre-norm"
|
||||
PostNorm = "post-norm"
|
||||
|
||||
|
||||
class SuperRunMode(Enum):
|
||||
"""This class defines the enumerations for Super Model Running Mode."""
|
||||
|
||||
FullModel = "fullmodel"
|
||||
Candidate = "candidate"
|
||||
Default = "fullmodel"
|
||||
|
||||
|
||||
class ShapeContainer:
|
||||
"""A class to maintain the shape of each weight tensor for a model."""
|
||||
|
||||
def __init__(self):
|
||||
self._names = []
|
||||
self._shapes = []
|
||||
self._name2index = dict()
|
||||
self._param_or_buffers = []
|
||||
|
||||
@property
|
||||
def shapes(self):
|
||||
return self._shapes
|
||||
|
||||
def __getitem__(self, index):
|
||||
return self._shapes[index]
|
||||
|
||||
def translate(self, tensors, all_none_match=True):
|
||||
result = TensorContainer()
|
||||
for index, name in enumerate(self._names):
|
||||
cur_num = tensors[index].numel()
|
||||
expected_num = self._shapes[index].numel()
|
||||
if cur_num < expected_num or (
|
||||
cur_num > expected_num and not all_none_match
|
||||
):
|
||||
raise ValueError("Invalid {:} vs {:}".format(cur_num, expected_num))
|
||||
cur_tensor = tensors[index].view(-1)[:expected_num]
|
||||
new_tensor = torch.reshape(cur_tensor, self._shapes[index])
|
||||
result.append(name, new_tensor, self._param_or_buffers[index])
|
||||
return result
|
||||
|
||||
def append(self, name, shape, param_or_buffer):
|
||||
if not isinstance(shape, torch.Size):
|
||||
raise TypeError(
|
||||
"The input tensor must be torch.Size instead of {:}".format(type(shape))
|
||||
)
|
||||
self._names.append(name)
|
||||
self._shapes.append(shape)
|
||||
self._param_or_buffers.append(param_or_buffer)
|
||||
assert name not in self._name2index, "The [{:}] has already been added.".format(
|
||||
name
|
||||
)
|
||||
self._name2index[name] = len(self._names) - 1
|
||||
|
||||
def query(self, name):
|
||||
if not self.has(name):
|
||||
raise ValueError(
|
||||
"The {:} is not in {:}".format(name, list(self._name2index.keys()))
|
||||
)
|
||||
index = self._name2index[name]
|
||||
return self._shapes[index]
|
||||
|
||||
def has(self, name):
|
||||
return name in self._name2index
|
||||
|
||||
def has_prefix(self, prefix):
|
||||
for name, idx in self._name2index.items():
|
||||
if name.startswith(prefix):
|
||||
return name
|
||||
return False
|
||||
|
||||
def numel(self, index=None):
|
||||
if index is None:
|
||||
shapes = self._shapes
|
||||
else:
|
||||
shapes = [self._shapes[index]]
|
||||
total = 0
|
||||
for shape in shapes:
|
||||
total += shape.numel()
|
||||
return total
|
||||
|
||||
def __len__(self):
|
||||
return len(self._names)
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}({num} tensors)".format(
|
||||
name=self.__class__.__name__, num=len(self)
|
||||
)
|
||||
|
||||
|
||||
class TensorContainer:
|
||||
"""A class to maintain both parameters and buffers for a model."""
|
||||
|
||||
def __init__(self):
|
||||
self._names = []
|
||||
self._tensors = []
|
||||
self._param_or_buffers = []
|
||||
self._name2index = dict()
|
||||
|
||||
def additive(self, tensors):
|
||||
result = TensorContainer()
|
||||
for index, name in enumerate(self._names):
|
||||
new_tensor = self._tensors[index] + tensors[index]
|
||||
result.append(name, new_tensor, self._param_or_buffers[index])
|
||||
return result
|
||||
|
||||
def create_container(self, tensors):
|
||||
result = TensorContainer()
|
||||
for index, name in enumerate(self._names):
|
||||
new_tensor = tensors[index]
|
||||
result.append(name, new_tensor, self._param_or_buffers[index])
|
||||
return result
|
||||
|
||||
def no_grad_clone(self):
|
||||
result = TensorContainer()
|
||||
with torch.no_grad():
|
||||
for index, name in enumerate(self._names):
|
||||
result.append(
|
||||
name, self._tensors[index].clone(), self._param_or_buffers[index]
|
||||
)
|
||||
return result
|
||||
|
||||
def to_shape_container(self):
|
||||
result = ShapeContainer()
|
||||
for index, name in enumerate(self._names):
|
||||
result.append(
|
||||
name, self._tensors[index].shape, self._param_or_buffers[index]
|
||||
)
|
||||
return result
|
||||
|
||||
def requires_grad_(self, requires_grad=True):
|
||||
for tensor in self._tensors:
|
||||
tensor.requires_grad_(requires_grad)
|
||||
|
||||
def parameters(self):
|
||||
return self._tensors
|
||||
|
||||
@property
|
||||
def tensors(self):
|
||||
return self._tensors
|
||||
|
||||
def flatten(self, tensors=None):
|
||||
if tensors is None:
|
||||
tensors = self._tensors
|
||||
tensors = [tensor.view(-1) for tensor in tensors]
|
||||
return torch.cat(tensors)
|
||||
|
||||
def unflatten(self, tensor):
|
||||
tensors, s = [], 0
|
||||
for raw_tensor in self._tensors:
|
||||
length = raw_tensor.numel()
|
||||
x = torch.reshape(tensor[s : s + length], shape=raw_tensor.shape)
|
||||
tensors.append(x)
|
||||
s += length
|
||||
return tensors
|
||||
|
||||
def append(self, name, tensor, param_or_buffer):
|
||||
if not isinstance(tensor, torch.Tensor):
|
||||
raise TypeError(
|
||||
"The input tensor must be torch.Tensor instead of {:}".format(
|
||||
type(tensor)
|
||||
)
|
||||
)
|
||||
self._names.append(name)
|
||||
self._tensors.append(tensor)
|
||||
self._param_or_buffers.append(param_or_buffer)
|
||||
assert name not in self._name2index, "The [{:}] has already been added.".format(
|
||||
name
|
||||
)
|
||||
self._name2index[name] = len(self._names) - 1
|
||||
|
||||
def query(self, name):
|
||||
if not self.has(name):
|
||||
raise ValueError(
|
||||
"The {:} is not in {:}".format(name, list(self._name2index.keys()))
|
||||
)
|
||||
index = self._name2index[name]
|
||||
return self._tensors[index]
|
||||
|
||||
def has(self, name):
|
||||
return name in self._name2index
|
||||
|
||||
def has_prefix(self, prefix):
|
||||
for name, idx in self._name2index.items():
|
||||
if name.startswith(prefix):
|
||||
return name
|
||||
return False
|
||||
|
||||
def numel(self):
|
||||
total = 0
|
||||
for tensor in self._tensors:
|
||||
total += tensor.numel()
|
||||
return total
|
||||
|
||||
def __len__(self):
|
||||
return len(self._names)
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}({num} tensors)".format(
|
||||
name=self.__class__.__name__, num=len(self)
|
||||
)
|
Loading…
Reference in New Issue
Block a user