Correct the codes

This commit is contained in:
D-X-Y 2021-05-24 05:38:02 +00:00
parent 3a2af8e55a
commit 53b63d3924
4 changed files with 36 additions and 23 deletions

View File

@ -9,6 +9,12 @@ from tqdm import tqdm
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
print("LIB-DIR: {:}".format(lib_dir))
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from xautodl.procedures import (
prepare_seed,
prepare_logger,
@ -38,28 +44,30 @@ def subsample(historical_x, historical_y, maxn=10000):
def main(args):
logger, env_info, model_kwargs = lfna_setup(args)
logger, model_kwargs = lfna_setup(args)
w_container_per_epoch = dict()
env = get_synthetic_env(mode=None, version=args.env_version)
logger.log("The total enviornment: {:}".format(env))
w_containers = dict()
per_timestamp_time, start_time = AverageMeter(), time.time()
for idx in range(1, env_info["total"]):
for idx, (future_time, (future_x, future_y)) in enumerate(env):
need_time = "Time Left: {:}".format(
convert_secs2time(per_timestamp_time.avg * (env_info["total"] - idx), True)
convert_secs2time(per_timestamp_time.avg * (len(env) - idx), True)
)
logger.log(
"[{:}]".format(time_string())
+ " [{:04d}/{:04d}]".format(idx, env_info["total"])
+ " [{:04d}/{:04d}]".format(idx, len(env))
+ " "
+ need_time
)
# train the same data
historical_x = env_info["{:}-x".format(idx)]
historical_y = env_info["{:}-y".format(idx)]
historical_x = future_x.to(args.device)
historical_y = future_y.to(args.device)
# build model
model = get_model(**model_kwargs)
print(model)
model = model.to(args.device)
# build optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True)
criterion = torch.nn.MSELoss()
@ -93,7 +101,7 @@ def main(args):
metric = ComposeMetric(MSEMetric(), SaveMetric())
eval_dataset = torch.utils.data.TensorDataset(
env_info["{:}-x".format(idx)], env_info["{:}-y".format(idx)]
future_x.to(args.device), future_y.to(args.device)
)
eval_loader = torch.utils.data.DataLoader(
eval_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0
@ -101,23 +109,21 @@ def main(args):
results = basic_eval_fn(eval_loader, model, metric, logger)
log_str = (
"[{:}]".format(time_string())
+ " [{:04d}/{:04d}]".format(idx, env_info["total"])
+ " [{:04d}/{:04d}]".format(idx, len(env))
+ " train-mse: {:.5f}, eval-mse: {:.5f}".format(
train_results["mse"], results["mse"]
)
)
logger.log(log_str)
save_path = logger.path(None) / "{:04d}-{:04d}.pth".format(
idx, env_info["total"]
)
w_container_per_epoch[idx] = model.get_w_container().no_grad_clone()
save_path = logger.path(None) / "{:04d}-{:04d}.pth".format(idx, len(env))
w_containers[idx] = model.get_w_container().no_grad_clone()
save_checkpoint(
{
"model_state_dict": model.state_dict(),
"model": model,
"index": idx,
"timestamp": env_info["{:}-timestamp".format(idx)],
"timestamp": future_time.item(),
},
save_path,
logger,
@ -127,7 +133,7 @@ def main(args):
start_time = time.time()
save_checkpoint(
{"w_container_per_epoch": w_container_per_epoch},
{"w_containers": w_containers},
logger.path(None) / "final-ckp.pth",
logger,
)
@ -174,6 +180,12 @@ if __name__ == "__main__":
default=300,
help="The total number of epochs.",
)
parser.add_argument(
"--device",
type=str,
default="cpu",
help="",
)
parser.add_argument(
"--workers",
type=int,

View File

@ -225,9 +225,11 @@ def main(args):
logger, model_kwargs = lfna_setup(args)
train_env = get_synthetic_env(mode="train", version=args.env_version)
valid_env = get_synthetic_env(mode="valid", version=args.env_version)
trainval_env = get_synthetic_env(mode="trainval", version=args.env_version)
all_env = get_synthetic_env(mode=None, version=args.env_version)
logger.log("The training enviornment: {:}".format(train_env))
logger.log("The validation enviornment: {:}".format(valid_env))
logger.log("The trainval enviornment: {:}".format(trainval_env))
logger.log("The total enviornment: {:}".format(all_env))
base_model = get_model(**model_kwargs)
@ -237,14 +239,14 @@ def main(args):
shape_container = base_model.get_w_container().to_shape_container()
# pre-train the hypernetwork
timestamps = train_env.get_timestamp(None)
timestamps = trainval_env.get_timestamp(None)
meta_model = LFNA_Meta(
shape_container,
args.layer_dim,
args.time_dim,
timestamps,
seq_length=args.seq_length,
interval=train_env.time_interval,
interval=trainval_env.time_interval,
)
meta_model = meta_model.to(args.device)
@ -253,8 +255,7 @@ def main(args):
logger.log("The base-model is\n{:}".format(base_model))
logger.log("The meta-model is\n{:}".format(meta_model))
# batch_sampler = EnvSampler(train_env, args.meta_batch, args.sampler_enlarge)
pretrain_v2(base_model, meta_model, criterion, train_env, args, logger)
pretrain_v2(base_model, meta_model, criterion, trainval_env, args, logger)
# try to evaluate once
# online_evaluate(train_env, meta_model, base_model, criterion, args, logger)

View File

@ -22,12 +22,12 @@ def get_synthetic_env(total_timestamp=1000, num_per_task=1000, mode=None, versio
[mean_generator], [[std_generator]], (-2, 2)
)
time_generator = TimeStamp(
min_timestamp=0, max_timestamp=math.pi * 6, num=total_timestamp, mode=mode
min_timestamp=0, max_timestamp=math.pi * 8, num=total_timestamp, mode=mode
)
oracle_map = DynamicLinearFunc(
params={
0: ComposedSinFunc(params={0: 2.0, 1: 1.0, 2: 2.2}),
1: ComposedSinFunc(params={0: 1.5, 1: 0.4, 2: 2.2}),
1: ComposedSinFunc(params={0: 1.5, 1: 0.6, 2: 1.8}),
}
)
dynamic_env = SyntheticDEnv(

View File

@ -28,7 +28,7 @@ class UnifiedSplit:
self._indexes = all_indexes[num_of_train : num_of_train + num_of_valid]
elif mode.lower() in ("test", "testing"):
self._indexes = all_indexes[num_of_train + num_of_valid :]
elif mode.lower() in ("trainval", "trainvalidation"):
elif mode.lower() in ("trainval", "trainvalid", "trainvalidation"):
self._indexes = all_indexes[: num_of_train + num_of_valid]
else:
raise ValueError("Unkonwn mode of {:}".format(mode))