Update LFNA ablation codes
This commit is contained in:
		| @@ -1,280 +0,0 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| # python exps/LFNA/lfna-debug.py --env_version v1 --hidden_dim 16 | ||||
| ##################################################### | ||||
| import sys, time, copy, torch, random, argparse | ||||
| from tqdm import tqdm | ||||
| from copy import deepcopy | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
| from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint | ||||
| from log_utils import time_string | ||||
| from log_utils import AverageMeter, convert_secs2time | ||||
|  | ||||
| from utils import split_str2indexes | ||||
|  | ||||
| from procedures.advanced_main import basic_train_fn, basic_eval_fn | ||||
| from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric | ||||
| from datasets.synthetic_core import get_synthetic_env | ||||
| from models.xcore import get_model | ||||
| from xlayers import super_core | ||||
|  | ||||
|  | ||||
| from lfna_utils import lfna_setup, train_model, TimeData | ||||
| from lfna_models import HyperNet | ||||
|  | ||||
|  | ||||
| class LFNAmlp: | ||||
|     """A LFNA meta-model that uses the MLP as delta-net.""" | ||||
|  | ||||
|     def __init__(self, obs_dim, hidden_sizes, act_name, criterion): | ||||
|         self.delta_net = super_core.SuperSequential( | ||||
|             super_core.SuperLinear(obs_dim, hidden_sizes[0]), | ||||
|             super_core.super_name2activation[act_name](), | ||||
|             super_core.SuperLinear(hidden_sizes[0], hidden_sizes[1]), | ||||
|             super_core.super_name2activation[act_name](), | ||||
|             super_core.SuperLinear(hidden_sizes[1], 1), | ||||
|         ) | ||||
|         self.meta_optimizer = torch.optim.Adam( | ||||
|             self.delta_net.parameters(), lr=0.01, amsgrad=True | ||||
|         ) | ||||
|         self.criterion = criterion | ||||
|  | ||||
|     def adapt(self, model, seq_flatten_w): | ||||
|         delta_inputs = torch.stack(seq_flatten_w, dim=-1) | ||||
|         delta = self.delta_net(delta_inputs) | ||||
|         container = model.get_w_container() | ||||
|         unflatten_delta = container.unflatten(delta) | ||||
|         future_container = container.create_container(unflatten_delta) | ||||
|         return future_container | ||||
|  | ||||
|     def step(self): | ||||
|         torch.nn.utils.clip_grad_norm_(self.delta_net.parameters(), 1.0) | ||||
|         self.meta_optimizer.step() | ||||
|  | ||||
|     def zero_grad(self): | ||||
|         self.meta_optimizer.zero_grad() | ||||
|         self.delta_net.zero_grad() | ||||
|  | ||||
|     def state_dict(self): | ||||
|         return dict( | ||||
|             delta_net=self.delta_net.state_dict(), | ||||
|             meta_optimizer=self.meta_optimizer.state_dict(), | ||||
|         ) | ||||
|  | ||||
|  | ||||
| def main(args): | ||||
|     logger, env_info, model_kwargs = lfna_setup(args) | ||||
|     dynamic_env = env_info["dynamic_env"] | ||||
|     model = get_model(dict(model_type="simple_mlp"), **model_kwargs) | ||||
|  | ||||
|     total_time = env_info["total"] | ||||
|     for i in range(total_time): | ||||
|         for xkey in ("timestamp", "x", "y"): | ||||
|             nkey = "{:}-{:}".format(i, xkey) | ||||
|             assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys())) | ||||
|     train_time_bar = total_time // 2 | ||||
|  | ||||
|     criterion = torch.nn.MSELoss() | ||||
|     logger.log("There are {:} weights.".format(model.get_w_container().numel())) | ||||
|  | ||||
|     adaptor = LFNAmlp(args.meta_seq, (200, 200), "leaky_relu", criterion) | ||||
|  | ||||
|     # pre-train the model | ||||
|     dataset = init_dataset = TimeData(0, env_info["0-x"], env_info["0-y"]) | ||||
|  | ||||
|     shape_container = model.get_w_container().to_shape_container() | ||||
|     hypernet = HyperNet(shape_container, 16) | ||||
|  | ||||
|     optimizer = torch.optim.Adam(hypernet.parameters(), lr=args.init_lr, amsgrad=True) | ||||
|  | ||||
|     best_loss, best_param = None, None | ||||
|     for _iepoch in range(args.epochs): | ||||
|         container = hypernet(None) | ||||
|  | ||||
|         preds = model.forward_with_container(dataset.x, container) | ||||
|         optimizer.zero_grad() | ||||
|         loss = criterion(preds, dataset.y) | ||||
|         loss.backward() | ||||
|         optimizer.step() | ||||
|         # save best | ||||
|         if best_loss is None or best_loss > loss.item(): | ||||
|             best_loss = loss.item() | ||||
|             best_param = copy.deepcopy(model.state_dict()) | ||||
|     print("hyper-net : best={:.4f}".format(best_loss)) | ||||
|  | ||||
|     init_loss = train_model(model, init_dataset, args.init_lr, args.epochs) | ||||
|     logger.log("The pre-training loss is {:.4f}".format(init_loss)) | ||||
|     import pdb | ||||
|  | ||||
|     pdb.set_trace() | ||||
|  | ||||
|     all_past_containers = [] | ||||
|     ground_truth_path = ( | ||||
|         logger.path(None) / ".." / "use-same-timestamp-v1-d16" / "final-ckp.pth" | ||||
|     ) | ||||
|     ground_truth_data = torch.load(ground_truth_path) | ||||
|     all_gt_containers = ground_truth_data["w_container_per_epoch"] | ||||
|     all_gt_flattens = dict() | ||||
|     for idx, container in all_gt_containers.items(): | ||||
|         all_gt_flattens[idx] = container.no_grad_clone().flatten() | ||||
|  | ||||
|     # LFNA meta-training | ||||
|     meta_loss_meter = AverageMeter() | ||||
|     per_epoch_time, start_time = AverageMeter(), time.time() | ||||
|     for iepoch in range(args.epochs): | ||||
|  | ||||
|         need_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) | ||||
|         ) | ||||
|         logger.log( | ||||
|             "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) | ||||
|             + need_time | ||||
|         ) | ||||
|  | ||||
|         adaptor.zero_grad() | ||||
|  | ||||
|         meta_losses = [] | ||||
|         for ibatch in range(args.meta_batch): | ||||
|             future_timestamp = random.randint(args.meta_seq, train_time_bar) | ||||
|             future_dataset = TimeData( | ||||
|                 future_timestamp, | ||||
|                 env_info["{:}-x".format(future_timestamp)], | ||||
|                 env_info["{:}-y".format(future_timestamp)], | ||||
|             ) | ||||
|             seq_datasets = [] | ||||
|             for iseq in range(args.meta_seq): | ||||
|                 cur_time = future_timestamp - iseq - 1 | ||||
|                 cur_x = env_info["{:}-x".format(cur_time)] | ||||
|                 cur_y = env_info["{:}-y".format(cur_time)] | ||||
|                 seq_datasets.append(TimeData(cur_time, cur_x, cur_y)) | ||||
|             seq_datasets.reverse() | ||||
|             seq_flatten_w = [ | ||||
|                 all_gt_flattens[dataset.timestamp] for dataset in seq_datasets | ||||
|             ] | ||||
|             future_container = adaptor.adapt(network, seq_flatten_w) | ||||
|             """ | ||||
|             future_y_hat = network.forward_with_container( | ||||
|                 future_dataset.x, future_container | ||||
|             ) | ||||
|             future_loss = adaptor.criterion(future_y_hat, future_dataset.y) | ||||
|             """ | ||||
|             future_loss = adaptor.criterion( | ||||
|                 future_container.flatten(), all_gt_flattens[future_timestamp] | ||||
|             ) | ||||
|             # import pdb; pdb.set_trace() | ||||
|             meta_losses.append(future_loss) | ||||
|         meta_loss = torch.stack(meta_losses).mean() | ||||
|         meta_loss.backward() | ||||
|         adaptor.step() | ||||
|  | ||||
|         meta_loss_meter.update(meta_loss.item()) | ||||
|  | ||||
|         logger.log( | ||||
|             "meta-loss: {:.4f} ({:.4f}) ".format( | ||||
|                 meta_loss_meter.avg, meta_loss_meter.val | ||||
|             ) | ||||
|         ) | ||||
|         if iepoch % 200 == 0: | ||||
|             save_checkpoint( | ||||
|                 {"adaptor": adaptor.state_dict(), "iepoch": iepoch}, | ||||
|                 logger.path("model"), | ||||
|                 logger, | ||||
|             ) | ||||
|         per_epoch_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|  | ||||
|     w_container_per_epoch = dict() | ||||
|     # import pdb; pdb.set_trace() | ||||
|     for idx in range(1, env_info["total"]): | ||||
|         future_time = env_info["{:}-timestamp".format(idx)] | ||||
|         future_x = env_info["{:}-x".format(idx)] | ||||
|         future_y = env_info["{:}-y".format(idx)] | ||||
|         seq_datasets = [] | ||||
|         for iseq in range(1, args.meta_seq + 1): | ||||
|             cur_time = future_timestamp - iseq - 1 | ||||
|             if cur_time < 0: | ||||
|                 cur_time = 0 | ||||
|             cur_x = env_info["{:}-x".format(cur_time)] | ||||
|             cur_y = env_info["{:}-y".format(cur_time)] | ||||
|             seq_datasets.append(TimeData(cur_time, cur_x, cur_y)) | ||||
|         seq_datasets.reverse() | ||||
|         seq_flatten_w = [all_gt_flattens[dataset.timestamp] for dataset in seq_datasets] | ||||
|         future_container = adaptor.adapt(network, seq_flatten_w) | ||||
|         w_container_per_epoch[idx] = future_container.no_grad_clone() | ||||
|         with torch.no_grad(): | ||||
|             future_y_hat = network.forward_with_container( | ||||
|                 future_x, w_container_per_epoch[idx] | ||||
|             ) | ||||
|             future_loss = adaptor.criterion(future_y_hat, future_y) | ||||
|         logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item())) | ||||
|  | ||||
|     save_checkpoint( | ||||
|         {"w_container_per_epoch": w_container_per_epoch}, | ||||
|         logger.path(None) / "final-ckp.pth", | ||||
|         logger, | ||||
|     ) | ||||
|  | ||||
|     logger.log("-" * 200 + "\n") | ||||
|     logger.close() | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|     parser = argparse.ArgumentParser("Use the data in the past.") | ||||
|     parser.add_argument( | ||||
|         "--save_dir", | ||||
|         type=str, | ||||
|         default="./outputs/lfna-synthetic/lfna-debug", | ||||
|         help="The checkpoint directory.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--env_version", | ||||
|         type=str, | ||||
|         required=True, | ||||
|         help="The synthetic enviornment version.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--hidden_dim", | ||||
|         type=int, | ||||
|         required=True, | ||||
|         help="The hidden dimension.", | ||||
|     ) | ||||
|     ##### | ||||
|     parser.add_argument( | ||||
|         "--init_lr", | ||||
|         type=float, | ||||
|         default=0.1, | ||||
|         help="The initial learning rate for the optimizer (default is Adam)", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--meta_batch", | ||||
|         type=int, | ||||
|         default=32, | ||||
|         help="The batch size for the meta-model", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--meta_seq", | ||||
|         type=int, | ||||
|         default=10, | ||||
|         help="The length of the sequence for meta-model.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--epochs", | ||||
|         type=int, | ||||
|         default=2000, | ||||
|         help="The total number of epochs.", | ||||
|     ) | ||||
|     # Random Seed | ||||
|     parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") | ||||
|     args = parser.parse_args() | ||||
|     if args.rand_seed is None or args.rand_seed < 0: | ||||
|         args.rand_seed = random.randint(1, 100000) | ||||
|     assert args.save_dir is not None, "The save dir argument can not be None" | ||||
|     args.save_dir = "{:}-{:}-d{:}".format( | ||||
|         args.save_dir, args.env_version, args.hidden_dim | ||||
|     ) | ||||
|     main(args) | ||||
		Reference in New Issue
	
	Block a user