Reformulate Math Functions
This commit is contained in:
		| @@ -5,6 +5,8 @@ from .get_dataset_with_transform import get_datasets, get_nas_search_loaders | ||||
| from .SearchDatasetWrap import SearchDataset | ||||
|  | ||||
| from .math_base_funcs import QuadraticFunc, CubicFunc, QuarticFunc | ||||
| from .math_base_funcs import DynamicQuadraticFunc | ||||
| from .synthetic_utils import SinGenerator, ConstantGenerator | ||||
| from .math_adv_funcs import DynamicQuadraticFunc, ConstantFunc | ||||
| from .math_adv_funcs import ComposedSinFunc | ||||
|  | ||||
| from .synthetic_utils import TimeStamp | ||||
| from .synthetic_env import SyntheticDEnv | ||||
|   | ||||
							
								
								
									
										121
									
								
								lib/datasets/math_adv_funcs.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										121
									
								
								lib/datasets/math_adv_funcs.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,121 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||
| ##################################################### | ||||
| import math | ||||
| import abc | ||||
| import copy | ||||
| import numpy as np | ||||
| from typing import Optional | ||||
| import torch | ||||
| import torch.utils.data as data | ||||
|  | ||||
| from .math_base_funcs import FitFunc | ||||
| from .math_base_funcs import QuadraticFunc | ||||
| from .math_base_funcs import QuarticFunc | ||||
|  | ||||
|  | ||||
| class DynamicQuadraticFunc(FitFunc): | ||||
|     """The dynamic quadratic function that outputs f(x) = a * x^2 + b * x + c. | ||||
|     The a, b, and c is a function of timestamp. | ||||
|     """ | ||||
|  | ||||
|     def __init__(self, list_of_points=None): | ||||
|         super(DynamicQuadraticFunc, self).__init__(3, list_of_points) | ||||
|         self._timestamp = None | ||||
|  | ||||
|     def __call__(self, x, timestamp=None): | ||||
|         self.check_valid() | ||||
|         if timestamp is None: | ||||
|             timestamp = self._timestamp | ||||
|         a = self._params[0](timestamp) | ||||
|         b = self._params[1](timestamp) | ||||
|         c = self._params[2](timestamp) | ||||
|         convert_fn = lambda x: x[-1] if isinstance(x, (tuple, list)) else x | ||||
|         a, b, c = convert_fn(a), convert_fn(b), convert_fn(c) | ||||
|         return a * x * x + b * x + c | ||||
|  | ||||
|     def _getitem(self, x, weights): | ||||
|         raise NotImplementedError | ||||
|  | ||||
|     def set_timestamp(self, timestamp): | ||||
|         self._timestamp = timestamp | ||||
|  | ||||
|     def __repr__(self): | ||||
|         return "{name}({a} * x^2 + {b} * x + {c})".format( | ||||
|             name=self.__class__.__name__, | ||||
|             a=self._params[0], | ||||
|             b=self._params[1], | ||||
|             c=self._params[2], | ||||
|         ) | ||||
|  | ||||
|  | ||||
| class ConstantFunc(FitFunc): | ||||
|     """The constant function: f(x) = c.""" | ||||
|  | ||||
|     def __init__(self, constant=None): | ||||
|         param = dict() | ||||
|         param[0] = constant | ||||
|         super(ConstantFunc, self).__init__(0, None, param) | ||||
|  | ||||
|     def __call__(self, x): | ||||
|         self.check_valid() | ||||
|         return self._params[0] | ||||
|  | ||||
|     def fit(self, **kwargs): | ||||
|         raise NotImplementedError | ||||
|  | ||||
|     def _getitem(self, x, weights): | ||||
|         raise NotImplementedError | ||||
|  | ||||
|     def __repr__(self): | ||||
|         return "{name}({a})".format(name=self.__class__.__name__, a=self._params[0]) | ||||
|  | ||||
|  | ||||
| class ComposedSinFunc(FitFunc): | ||||
|     """The composed sin function that outputs: | ||||
|       f(x) = amplitude-scale-of(x) * sin( period-phase-shift-of(x) ) | ||||
|     - the amplitude scale is a quadratic function of x | ||||
|     - the period-phase-shift is another quadratic function of x | ||||
|     """ | ||||
|  | ||||
|     def __init__(self, **kwargs): | ||||
|         super(ComposedSinFunc, self).__init__(0, None) | ||||
|         self.fit(**kwargs) | ||||
|  | ||||
|     def __call__(self, x): | ||||
|         self.check_valid() | ||||
|         scale = self._params["amplitude_scale"](x) | ||||
|         period_phase = self._params["period_phase_shift"](x) | ||||
|         return scale * math.sin(period_phase) | ||||
|  | ||||
|     def fit(self, **kwargs): | ||||
|         num_sin_phase = kwargs.get("num_sin_phase", 7) | ||||
|         min_amplitude = kwargs.get("min_amplitude", 1) | ||||
|         max_amplitude = kwargs.get("max_amplitude", 4) | ||||
|         phase_shift = kwargs.get("phase_shift", 0.0) | ||||
|         # create parameters | ||||
|         amplitude_scale = QuadraticFunc( | ||||
|             [(0, min_amplitude), (0.5, max_amplitude), (1, min_amplitude)] | ||||
|         ) | ||||
|         fitting_data = [] | ||||
|         temp_max_scalar = 2 ** (num_sin_phase - 1) | ||||
|         for i in range(num_sin_phase): | ||||
|             value = (2 ** i) / temp_max_scalar | ||||
|             next_value = (2 ** (i + 1)) / temp_max_scalar | ||||
|             for _phase in (0, 0.25, 0.5, 0.75): | ||||
|                 inter_value = value + (next_value - value) * _phase | ||||
|                 fitting_data.append((inter_value, math.pi * (2 * i + _phase))) | ||||
|         period_phase_shift = QuarticFunc(fitting_data) | ||||
|         self.set( | ||||
|             dict(amplitude_scale=amplitude_scale, period_phase_shift=period_phase_shift) | ||||
|         ) | ||||
|  | ||||
|     def _getitem(self, x, weights): | ||||
|         raise NotImplementedError | ||||
|  | ||||
|     def __repr__(self): | ||||
|         return "{name}({amplitude_scale} * sin({period_phase_shift}))".format( | ||||
|             name=self.__class__.__name__, | ||||
|             amplitude_scale=self._params["amplitude_scale"], | ||||
|             period_phase_shift=self._params["period_phase_shift"], | ||||
|         ) | ||||
| @@ -13,13 +13,17 @@ import torch.utils.data as data | ||||
| class FitFunc(abc.ABC): | ||||
|     """The fit function that outputs f(x) = a * x^2 + b * x + c.""" | ||||
|  | ||||
|     def __init__(self, freedom: int, list_of_points=None): | ||||
|     def __init__(self, freedom: int, list_of_points=None, _params=None): | ||||
|         self._params = dict() | ||||
|         for i in range(freedom): | ||||
|             self._params[i] = None | ||||
|         self._freedom = freedom | ||||
|         if list_of_points is not None and _params is not None: | ||||
|             raise ValueError("list_of_points and _params can not be set simultaneously") | ||||
|         if list_of_points is not None: | ||||
|             self.fit(list_of_points) | ||||
|             self.fit(list_of_points=list_of_points) | ||||
|         if _params is not None: | ||||
|             self.set(_params) | ||||
|  | ||||
|     def set(self, _params): | ||||
|         self._params = copy.deepcopy(_params) | ||||
| @@ -45,13 +49,13 @@ class FitFunc(abc.ABC): | ||||
|     def _getitem(self, x): | ||||
|         raise NotImplementedError | ||||
|  | ||||
|     def fit( | ||||
|         self, | ||||
|         list_of_points, | ||||
|         max_iter=900, | ||||
|         lr_max=1.0, | ||||
|         verbose=False, | ||||
|     ): | ||||
|     def fit(self, **kwargs): | ||||
|         list_of_points = kwargs["list_of_points"] | ||||
|         max_iter, lr_max, verbose = ( | ||||
|             kwargs.get("max_iter", 900), | ||||
|             kwargs.get("lr_max", 1.0), | ||||
|             kwargs.get("verbose", False), | ||||
|         ) | ||||
|         with torch.no_grad(): | ||||
|             data = torch.Tensor(list_of_points).type(torch.float32) | ||||
|             assert data.ndim == 2 and data.size(1) == 2, "Invalid shape : {:}".format( | ||||
| @@ -113,7 +117,7 @@ class QuadraticFunc(FitFunc): | ||||
|         return weights[0] * x * x + weights[1] * x + weights[2] | ||||
|  | ||||
|     def __repr__(self): | ||||
|         return "{name}(y = {a} * x^2 + {b} * x + {c})".format( | ||||
|         return "{name}({a} * x^2 + {b} * x + {c})".format( | ||||
|             name=self.__class__.__name__, | ||||
|             a=self._params[0], | ||||
|             b=self._params[1], | ||||
| @@ -140,7 +144,7 @@ class CubicFunc(FitFunc): | ||||
|         return weights[0] * x ** 3 + weights[1] * x ** 2 + weights[2] * x + weights[3] | ||||
|  | ||||
|     def __repr__(self): | ||||
|         return "{name}(y = {a} * x^3 + {b} * x^2 + {c} * x + {d})".format( | ||||
|         return "{name}({a} * x^3 + {b} * x^2 + {c} * x + {d})".format( | ||||
|             name=self.__class__.__name__, | ||||
|             a=self._params[0], | ||||
|             b=self._params[1], | ||||
| @@ -175,7 +179,7 @@ class QuarticFunc(FitFunc): | ||||
|         ) | ||||
|  | ||||
|     def __repr__(self): | ||||
|         return "{name}(y = {a} * x^4 + {b} * x^3 + {c} * x^2 + {d} * x + {e})".format( | ||||
|         return "{name}({a} * x^4 + {b} * x^3 + {c} * x^2 + {d} * x + {e})".format( | ||||
|             name=self.__class__.__name__, | ||||
|             a=self._params[0], | ||||
|             b=self._params[1], | ||||
| @@ -183,34 +187,3 @@ class QuarticFunc(FitFunc): | ||||
|             d=self._params[3], | ||||
|             e=self._params[3], | ||||
|         ) | ||||
|  | ||||
|  | ||||
| class DynamicQuadraticFunc(FitFunc): | ||||
|     """The dynamic quadratic function that outputs f(x) = a * x^2 + b * x + c.""" | ||||
|  | ||||
|     def __init__(self, list_of_points=None): | ||||
|         super(DynamicQuadraticFunc, self).__init__(3, list_of_points) | ||||
|         self._timestamp = None | ||||
|  | ||||
|     def __call__(self, x): | ||||
|         self.check_valid() | ||||
|         a = self._params[0][self._timestamp] | ||||
|         b = self._params[1][self._timestamp] | ||||
|         c = self._params[2][self._timestamp] | ||||
|         convert_fn = lambda x: x[-1] if isinstance(x, (tuple, list)) else x | ||||
|         a, b, c = convert_fn(a), convert_fn(b), convert_fn(c) | ||||
|         return a * x * x + b * x + c | ||||
|  | ||||
|     def _getitem(self, x, weights): | ||||
|         raise NotImplementedError | ||||
|  | ||||
|     def set_timestamp(self, timestamp): | ||||
|         self._timestamp = timestamp | ||||
|  | ||||
|     def __repr__(self): | ||||
|         return "{name}(y = {a} * x^2 + {b} * x + {c})".format( | ||||
|             name=self.__class__.__name__, | ||||
|             a=self._params[0], | ||||
|             b=self._params[1], | ||||
|             c=self._params[2], | ||||
|         ) | ||||
|   | ||||
| @@ -4,45 +4,42 @@ | ||||
| import math | ||||
| import abc | ||||
| import numpy as np | ||||
| from typing import List, Optional | ||||
| from typing import List, Optional, Dict | ||||
| import torch | ||||
| import torch.utils.data as data | ||||
|  | ||||
| from .synthetic_utils import UnifiedSplit | ||||
| from .synthetic_utils import TimeStamp | ||||
|  | ||||
|  | ||||
| class SyntheticDEnv(UnifiedSplit, data.Dataset): | ||||
| class SyntheticDEnv(data.Dataset): | ||||
|     """The synethtic dynamic environment.""" | ||||
|  | ||||
|     def __init__( | ||||
|         self, | ||||
|         mean_generators: List[data.Dataset], | ||||
|         cov_generators: List[List[data.Dataset]], | ||||
|         mean_functors: List[data.Dataset], | ||||
|         cov_functors: List[List[data.Dataset]], | ||||
|         num_per_task: int = 5000, | ||||
|         time_stamp_config: Optional[Dict] = None, | ||||
|         mode: Optional[str] = None, | ||||
|     ): | ||||
|         self._ndim = len(mean_generators) | ||||
|         self._ndim = len(mean_functors) | ||||
|         assert self._ndim == len( | ||||
|             cov_generators | ||||
|         ), "length does not match {:} vs. {:}".format(self._ndim, len(cov_generators)) | ||||
|         for cov_generator in cov_generators: | ||||
|             cov_functors | ||||
|         ), "length does not match {:} vs. {:}".format(self._ndim, len(cov_functors)) | ||||
|         for cov_functor in cov_functors: | ||||
|             assert self._ndim == len( | ||||
|                 cov_generator | ||||
|             ), "length does not match {:} vs. {:}".format( | ||||
|                 self._ndim, len(cov_generator) | ||||
|             ) | ||||
|                 cov_functor | ||||
|             ), "length does not match {:} vs. {:}".format(self._ndim, len(cov_functor)) | ||||
|         self._num_per_task = num_per_task | ||||
|         self._total_num = len(mean_generators[0]) | ||||
|         for mean_generator in mean_generators: | ||||
|             assert self._total_num == len(mean_generator) | ||||
|         for cov_generator in cov_generators: | ||||
|             for cov_g in cov_generator: | ||||
|                 assert self._total_num == len(cov_g) | ||||
|         if time_stamp_config is None: | ||||
|             time_stamp_config = dict(mode=mode) | ||||
|         else: | ||||
|             time_stamp_config["mode"] = mode | ||||
|  | ||||
|         self._mean_generators = mean_generators | ||||
|         self._cov_generators = cov_generators | ||||
|         self._timestamp_generator = TimeStamp(**time_stamp_config) | ||||
|  | ||||
|         UnifiedSplit.__init__(self, self._total_num, mode) | ||||
|         self._mean_functors = mean_functors | ||||
|         self._cov_functors = cov_functors | ||||
|  | ||||
|     def __iter__(self): | ||||
|         self._iter_num = 0 | ||||
| @@ -56,11 +53,11 @@ class SyntheticDEnv(UnifiedSplit, data.Dataset): | ||||
|  | ||||
|     def __getitem__(self, index): | ||||
|         assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self)) | ||||
|         index = self._indexes[index] | ||||
|         mean_list = [generator[index][-1] for generator in self._mean_generators] | ||||
|         index, timestamp = self._timestamp_generator[index] | ||||
|         mean_list = [functor(timestamp) for functor in self._mean_functors] | ||||
|         cov_matrix = [ | ||||
|             [cov_gen[index][-1] for cov_gen in cov_generator] | ||||
|             for cov_generator in self._cov_generators | ||||
|             [cov_gen(timestamp) for cov_gen in cov_functor] | ||||
|             for cov_functor in self._cov_functors | ||||
|         ] | ||||
|  | ||||
|         dataset = np.random.multivariate_normal( | ||||
| @@ -69,13 +66,13 @@ class SyntheticDEnv(UnifiedSplit, data.Dataset): | ||||
|         return index, torch.Tensor(dataset) | ||||
|  | ||||
|     def __len__(self): | ||||
|         return len(self._indexes) | ||||
|         return len(self._timestamp_generator) | ||||
|  | ||||
|     def __repr__(self): | ||||
|         return "{name}({cur_num:}/{total} elements, ndim={ndim}, num_per_task={num_per_task})".format( | ||||
|             name=self.__class__.__name__, | ||||
|             cur_num=len(self), | ||||
|             total=self._total_num, | ||||
|             total=len(self._timestamp_generator), | ||||
|             ndim=self._ndim, | ||||
|             num_per_task=self._num_per_task, | ||||
|         ) | ||||
|   | ||||
| @@ -3,25 +3,30 @@ | ||||
| ##################################################### | ||||
|  | ||||
| from .math_base_funcs import DynamicQuadraticFunc | ||||
| from .synthetic_utils import ConstantGenerator, SinGenerator | ||||
| from .math_adv_funcs import ConstantFunc, ComposedSinFunc | ||||
| from .synthetic_env import SyntheticDEnv | ||||
|  | ||||
|  | ||||
| def create_example_v1(timestamps=50, num_per_task=5000): | ||||
|     mean_generator = SinGenerator(num=timestamps) | ||||
|     std_generator = SinGenerator(num=timestamps, min_amplitude=0.5, max_amplitude=0.5) | ||||
|     mean_generator = ComposedSinFunc() | ||||
|     std_generator = ComposedSinFunc(min_amplitude=0.5, max_amplitude=0.5) | ||||
|     std_generator.set_transform(lambda x: x + 1) | ||||
|  | ||||
|     dynamic_env = SyntheticDEnv( | ||||
|         [mean_generator], [[std_generator]], num_per_task=num_per_task | ||||
|         [mean_generator], | ||||
|         [[std_generator]], | ||||
|         num_per_task=num_per_task, | ||||
|         time_stamp_config=dict(num=timestamps), | ||||
|     ) | ||||
|  | ||||
|     function = DynamicQuadraticFunc() | ||||
|     function_param = dict() | ||||
|     function_param[0] = SinGenerator( | ||||
|         num=timestamps, num_sin_phase=4, phase_shift=1.0, max_amplitude=1.0 | ||||
|     function_param[0] = ComposedSinFunc( | ||||
|         num_sin_phase=4, phase_shift=1.0, max_amplitude=1.0 | ||||
|     ) | ||||
|     function_param[1] = ConstantGenerator(constant=0.9) | ||||
|     function_param[2] = SinGenerator( | ||||
|         num=timestamps, num_sin_phase=5, phase_shift=0.4, max_amplitude=0.9 | ||||
|     function_param[1] = ConstantFunc(constant=0.9) | ||||
|     function_param[2] = ComposedSinFunc( | ||||
|         num_sin_phase=5, phase_shift=0.4, max_amplitude=0.9 | ||||
|     ) | ||||
|     function.set(function_param) | ||||
|     return dynamic_env, function | ||||
|   | ||||
| @@ -8,8 +8,6 @@ from typing import Optional | ||||
| import torch | ||||
| import torch.utils.data as data | ||||
|  | ||||
| from .math_base_funcs import QuadraticFunc, QuarticFunc | ||||
|  | ||||
|  | ||||
| class UnifiedSplit: | ||||
|     """A class to unify the split strategy.""" | ||||
| @@ -39,102 +37,20 @@ class UnifiedSplit: | ||||
|         return self._mode | ||||
|  | ||||
|  | ||||
| class SinGenerator(UnifiedSplit, data.Dataset): | ||||
|     """The synethtic generator for the dynamically changing environment. | ||||
|  | ||||
|     - x in [0, 1] | ||||
|     - y = amplitude-scale-of(x) * sin( period-phase-shift-of(x) ) | ||||
|     - where | ||||
|     - the amplitude scale is a quadratic function of x | ||||
|     - the period-phase-shift is another quadratic function of x | ||||
|  | ||||
|     """ | ||||
| class TimeStamp(UnifiedSplit, data.Dataset): | ||||
|     """The timestamp dataset.""" | ||||
|  | ||||
|     def __init__( | ||||
|         self, | ||||
|         min_timestamp: float = 0.0, | ||||
|         max_timestamp: float = 1.0, | ||||
|         num: int = 100, | ||||
|         num_sin_phase: int = 7, | ||||
|         min_amplitude: float = 1, | ||||
|         max_amplitude: float = 4, | ||||
|         phase_shift: float = 0, | ||||
|         mode: Optional[str] = None, | ||||
|     ): | ||||
|         self._amplitude_scale = QuadraticFunc( | ||||
|             [(0, min_amplitude), (0.5, max_amplitude), (1, min_amplitude)] | ||||
|         ) | ||||
|  | ||||
|         self._num_sin_phase = num_sin_phase | ||||
|         self._interval = 1.0 / (float(num) - 1) | ||||
|         self._min_timestamp = min_timestamp | ||||
|         self._max_timestamp = max_timestamp | ||||
|         self._interval = (max_timestamp - min_timestamp) / (float(num) - 1) | ||||
|         self._total_num = num | ||||
|  | ||||
|         fitting_data = [] | ||||
|         temp_max_scalar = 2 ** (num_sin_phase - 1) | ||||
|         for i in range(num_sin_phase): | ||||
|             value = (2 ** i) / temp_max_scalar | ||||
|             next_value = (2 ** (i + 1)) / temp_max_scalar | ||||
|             for _phase in (0, 0.25, 0.5, 0.75): | ||||
|                 inter_value = value + (next_value - value) * _phase | ||||
|                 fitting_data.append((inter_value, math.pi * (2 * i + _phase))) | ||||
|         self._period_phase_shift = QuarticFunc(fitting_data) | ||||
|         UnifiedSplit.__init__(self, self._total_num, mode) | ||||
|         self._transform = None | ||||
|  | ||||
|     def __iter__(self): | ||||
|         self._iter_num = 0 | ||||
|         return self | ||||
|  | ||||
|     def __next__(self): | ||||
|         if self._iter_num >= len(self): | ||||
|             raise StopIteration | ||||
|         self._iter_num += 1 | ||||
|         return self.__getitem__(self._iter_num - 1) | ||||
|  | ||||
|     def set_transform(self, transform): | ||||
|         self._transform = transform | ||||
|  | ||||
|     def transform(self, x): | ||||
|         if self._transform is None: | ||||
|             return x | ||||
|         else: | ||||
|             return self._transform(x) | ||||
|  | ||||
|     def __getitem__(self, index): | ||||
|         assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self)) | ||||
|         index = self._indexes[index] | ||||
|         position = self._interval * index | ||||
|         value = self._amplitude_scale(position) * math.sin( | ||||
|             self._period_phase_shift(position) | ||||
|         ) | ||||
|         return index, position, self.transform(value) | ||||
|  | ||||
|     def __len__(self): | ||||
|         return len(self._indexes) | ||||
|  | ||||
|     def __repr__(self): | ||||
|         return ( | ||||
|             "{name}({cur_num:}/{total} elements,\n" | ||||
|             "amplitude={amplitude},\n" | ||||
|             "period_phase_shift={period_phase_shift})".format( | ||||
|                 name=self.__class__.__name__, | ||||
|                 cur_num=len(self), | ||||
|                 total=self._total_num, | ||||
|                 amplitude=self._amplitude_scale, | ||||
|                 period_phase_shift=self._period_phase_shift, | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|  | ||||
| class ConstantGenerator(UnifiedSplit, data.Dataset): | ||||
|     """The constant generator.""" | ||||
|  | ||||
|     def __init__( | ||||
|         self, | ||||
|         num: int = 100, | ||||
|         constant: float = 0.1, | ||||
|         mode: Optional[str] = None, | ||||
|     ): | ||||
|         self._total_num = num | ||||
|         self._constant = constant | ||||
|         UnifiedSplit.__init__(self, self._total_num, mode) | ||||
|  | ||||
|     def __iter__(self): | ||||
| @@ -150,7 +66,8 @@ class ConstantGenerator(UnifiedSplit, data.Dataset): | ||||
|     def __getitem__(self, index): | ||||
|         assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self)) | ||||
|         index = self._indexes[index] | ||||
|         return index, index, self._constant | ||||
|         timestamp = self._min_timestamp + self._interval * index | ||||
|         return index, timestamp | ||||
|  | ||||
|     def __len__(self): | ||||
|         return len(self._indexes) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user