Update misc

This commit is contained in:
D-X-Y 2021-06-08 05:42:16 -07:00
parent 5d7ccd445d
commit f9bbf974de
3 changed files with 164 additions and 2 deletions

View File

@ -26,3 +26,5 @@ class TestSuperReArrange(unittest.TestCase):
tensor = torch.rand((8, 4, 32, 32))
print("The tensor shape: {:}".format(tensor.shape))
print(layer)
outs = layer(tensor)
print("The output tensor shape: {:}".format(outs.shape))

View File

@ -0,0 +1,145 @@
# borrowed from https://github.com/arogozhnikov/einops/blob/master/einops/parsing.py
class ParsedExpression:
"""
non-mutable structure that contains information about one side of expression (e.g. 'b c (h w)')
and keeps some information important for downstream
"""
def __init__(self, expression):
self.has_ellipsis = False
self.has_ellipsis_parenthesized = None
self.identifiers = set()
# that's axes like 2, 3 or 5. Axes with size 1 are exceptional and replaced with empty composition
self.has_non_unitary_anonymous_axes = False
# composition keeps structure of composite axes, see how different corner cases are handled in tests
self.composition = []
if "." in expression:
if "..." not in expression:
raise ValueError(
"Expression may contain dots only inside ellipsis (...)"
)
if str.count(expression, "...") != 1 or str.count(expression, ".") != 3:
raise ValueError(
"Expression may contain dots only inside ellipsis (...); only one ellipsis for tensor "
)
expression = expression.replace("...", _ellipsis)
self.has_ellipsis = True
bracket_group = None
def add_axis_name(x):
if x is not None:
if x in self.identifiers:
raise ValueError(
'Indexing expression contains duplicate dimension "{}"'.format(
x
)
)
if x == _ellipsis:
self.identifiers.add(_ellipsis)
if bracket_group is None:
self.composition.append(_ellipsis)
self.has_ellipsis_parenthesized = False
else:
bracket_group.append(_ellipsis)
self.has_ellipsis_parenthesized = True
else:
is_number = str.isdecimal(x)
if is_number and int(x) == 1:
# handling the case of anonymous axis of length 1
if bracket_group is None:
self.composition.append([])
else:
pass # no need to think about 1s inside parenthesis
return
is_axis_name, reason = self.check_axis_name(x, return_reason=True)
if not (is_number or is_axis_name):
raise ValueError(
"Invalid axis identifier: {}\n{}".format(x, reason)
)
if is_number:
x = AnonymousAxis(x)
self.identifiers.add(x)
if is_number:
self.has_non_unitary_anonymous_axes = True
if bracket_group is None:
self.composition.append([x])
else:
bracket_group.append(x)
current_identifier = None
for char in expression:
if char in "() ":
add_axis_name(current_identifier)
current_identifier = None
if char == "(":
if bracket_group is not None:
raise ValueError(
"Axis composition is one-level (brackets inside brackets not allowed)"
)
bracket_group = []
elif char == ")":
if bracket_group is None:
raise ValueError("Brackets are not balanced")
self.composition.append(bracket_group)
bracket_group = None
elif str.isalnum(char) or char in ["_", _ellipsis]:
if current_identifier is None:
current_identifier = char
else:
current_identifier += char
else:
raise ValueError("Unknown character '{}'".format(char))
if bracket_group is not None:
raise ValueError(
'Imbalanced parentheses in expression: "{}"'.format(expression)
)
add_axis_name(current_identifier)
def flat_axes_order(self) -> List:
result = []
for composed_axis in self.composition:
assert isinstance(composed_axis, list), "does not work with ellipsis"
for axis in composed_axis:
result.append(axis)
return result
def has_composed_axes(self) -> bool:
# this will ignore 1 inside brackets
for axes in self.composition:
if isinstance(axes, list) and len(axes) > 1:
return True
return False
@staticmethod
def check_axis_name(name: str, return_reason=False):
"""
Valid axes names are python identifiers except keywords,
and additionally should not start or end with underscore
"""
if not str.isidentifier(name):
result = False, "not a valid python identifier"
elif name[0] == "_" or name[-1] == "_":
result = False, "axis name should should not start or end with underscore"
else:
if keyword.iskeyword(name):
warnings.warn(
"It is discouraged to use axes names that are keywords: {}".format(
name
),
RuntimeWarning,
)
if name in ["axis"]:
warnings.warn(
"It is discouraged to use 'axis' as an axis name "
"and will raise an error in future",
FutureWarning,
)
result = True, None
if return_reason:
return result
else:
return result[0]

View File

@ -11,6 +11,7 @@ import math
from typing import Optional, Callable
from xautodl import spaces
from .misc_utils import ParsedExpression
from .super_module import SuperModule
from .super_module import IntSpaceType
from .super_module import BoolSpaceType
@ -24,6 +25,17 @@ class SuperReArrange(SuperModule):
self._pattern = pattern
self._axes_lengths = axes_lengths
axes_lengths = tuple(sorted(self._axes_lengths.items()))
# Perform initial parsing of pattern and provided supplementary info
# axes_lengths is a tuple of tuples (axis_name, axis_length)
left, right = pattern.split("->")
left = ParsedExpression(left)
right = ParsedExpression(right)
import pdb
pdb.set_trace()
print("-")
@property
def abstract_search_space(self):
@ -31,13 +43,16 @@ class SuperReArrange(SuperModule):
return root_node
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
self.forward_raw(input)
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
import pdb
pdb.set_trace()
raise NotImplementedError
def extra_repr(self) -> str:
params = repr(self._pattern)
for axis, length in self._axes_lengths.items():
params += ", {}={}".format(axis, length)
return "{}({})".format(self.__class__.__name__, params)
return "{:}".format(params)