mps / cpu support
This commit is contained in:
		| @@ -25,14 +25,14 @@ from cotracker.models.core.embeddings import ( | ||||
| torch.manual_seed(0) | ||||
|  | ||||
|  | ||||
| def get_points_on_a_grid(grid_size, interp_shape, grid_center=(0, 0)): | ||||
| def get_points_on_a_grid(grid_size, interp_shape, grid_center=(0, 0), device='cuda'): | ||||
|     if grid_size == 1: | ||||
|         return torch.tensor([interp_shape[1] / 2, interp_shape[0] / 2])[ | ||||
|             None, None | ||||
|         ].cuda() | ||||
|         ].to(device) | ||||
|  | ||||
|     grid_y, grid_x = meshgrid2d( | ||||
|         1, grid_size, grid_size, stack=False, norm=False, device="cuda" | ||||
|         1, grid_size, grid_size, stack=False, norm=False, device=device | ||||
|     ) | ||||
|     step = interp_shape[1] // 64 | ||||
|     if grid_center[0] != 0 or grid_center[1] != 0: | ||||
| @@ -47,7 +47,7 @@ def get_points_on_a_grid(grid_size, interp_shape, grid_center=(0, 0)): | ||||
|  | ||||
|     grid_y = grid_y + grid_center[0] | ||||
|     grid_x = grid_x + grid_center[1] | ||||
|     xy = torch.stack([grid_x, grid_y], dim=-1).cuda() | ||||
|     xy = torch.stack([grid_x, grid_y], dim=-1).to(device) | ||||
|     return xy | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -17,7 +17,7 @@ from cotracker.models.build_cotracker import ( | ||||
|  | ||||
| class CoTrackerPredictor(torch.nn.Module): | ||||
|     def __init__( | ||||
|         self, checkpoint="cotracker/checkpoints/cotracker_stride_4_wind_8.pth" | ||||
|         self, checkpoint="cotracker/checkpoints/cotracker_stride_4_wind_8.pth", device=None | ||||
|     ): | ||||
|         super().__init__() | ||||
|         self.interp_shape = (384, 512) | ||||
| @@ -25,7 +25,8 @@ class CoTrackerPredictor(torch.nn.Module): | ||||
|         model = build_cotracker(checkpoint) | ||||
|  | ||||
|         self.model = model | ||||
|         self.model.to("cuda") | ||||
|         self.device = device or 'cuda' | ||||
|         self.model.to(self.device) | ||||
|         self.model.eval() | ||||
|  | ||||
|     @torch.no_grad() | ||||
| @@ -72,7 +73,7 @@ class CoTrackerPredictor(torch.nn.Module): | ||||
|         grid_width = W // grid_step | ||||
|         grid_height = H // grid_step | ||||
|         tracks = visibilities = None | ||||
|         grid_pts = torch.zeros((1, grid_width * grid_height, 3)).to("cuda") | ||||
|         grid_pts = torch.zeros((1, grid_width * grid_height, 3)).to(self.device) | ||||
|         grid_pts[0, :, 0] = grid_query_frame | ||||
|         for offset in tqdm(range(grid_step * grid_step)): | ||||
|             ox = offset % grid_step | ||||
| @@ -107,10 +108,10 @@ class CoTrackerPredictor(torch.nn.Module): | ||||
|         assert B == 1 | ||||
|  | ||||
|         video = video.reshape(B * T, C, H, W) | ||||
|         video = F.interpolate(video, tuple(self.interp_shape), mode="bilinear").cuda() | ||||
|         video = F.interpolate(video, tuple(self.interp_shape), mode="bilinear").to(self.device) | ||||
|         video = video.reshape( | ||||
|             B, T, 3, self.interp_shape[0], self.interp_shape[1] | ||||
|         ).cuda() | ||||
|         ).to(self.device) | ||||
|  | ||||
|         if queries is not None: | ||||
|             queries = queries.clone() | ||||
| @@ -119,7 +120,7 @@ class CoTrackerPredictor(torch.nn.Module): | ||||
|             queries[:, :, 1] *= self.interp_shape[1] / W | ||||
|             queries[:, :, 2] *= self.interp_shape[0] / H | ||||
|         elif grid_size > 0: | ||||
|             grid_pts = get_points_on_a_grid(grid_size, self.interp_shape) | ||||
|             grid_pts = get_points_on_a_grid(grid_size, self.interp_shape, device=self.device) | ||||
|             if segm_mask is not None: | ||||
|                 segm_mask = F.interpolate( | ||||
|                     segm_mask, tuple(self.interp_shape), mode="nearest" | ||||
| @@ -136,7 +137,7 @@ class CoTrackerPredictor(torch.nn.Module): | ||||
|             ) | ||||
|  | ||||
|         if add_support_grid: | ||||
|             grid_pts = get_points_on_a_grid(self.support_grid_size, self.interp_shape) | ||||
|             grid_pts = get_points_on_a_grid(self.support_grid_size, self.interp_shape, device=self.device) | ||||
|             grid_pts = torch.cat( | ||||
|                 [torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2 | ||||
|             ) | ||||
|   | ||||
| @@ -63,6 +63,7 @@ class Visualizer: | ||||
|         self, | ||||
|         video: torch.Tensor,  # (B,T,C,H,W) | ||||
|         tracks: torch.Tensor,  # (B,T,N,2) | ||||
|         visibility: torch.Tensor,  # (B, T, N, 1) bool | ||||
|         gt_tracks: torch.Tensor = None,  # (B,T,N,2) | ||||
|         segm_mask: torch.Tensor = None,  # (B,1,H,W) | ||||
|         filename: str = "video", | ||||
| @@ -94,6 +95,7 @@ class Visualizer: | ||||
|         res_video = self.draw_tracks_on_video( | ||||
|             video=video, | ||||
|             tracks=tracks, | ||||
|             visibility=visibility, | ||||
|             segm_mask=segm_mask, | ||||
|             gt_tracks=gt_tracks, | ||||
|             query_frame=query_frame, | ||||
| @@ -127,6 +129,7 @@ class Visualizer: | ||||
|         self, | ||||
|         video: torch.Tensor, | ||||
|         tracks: torch.Tensor, | ||||
|         visibility: torch.Tensor, | ||||
|         segm_mask: torch.Tensor = None, | ||||
|         gt_tracks=None, | ||||
|         query_frame: int = 0, | ||||
| @@ -228,11 +231,13 @@ class Visualizer: | ||||
|                     if not compensate_for_camera_motion or ( | ||||
|                         compensate_for_camera_motion and segm_mask[i] > 0 | ||||
|                     ): | ||||
|  | ||||
|                         cv2.circle( | ||||
|                             res_video[t], | ||||
|                             coord, | ||||
|                             int(self.linewidth * 2), | ||||
|                             vector_colors[t, i].tolist(), | ||||
|                             thickness=-1 if visibility[0, t, i] else 2 | ||||
|                             -1, | ||||
|                         ) | ||||
|  | ||||
|   | ||||
							
								
								
									
										7
									
								
								demo.py
									
									
									
									
									
								
							
							
						
						
									
										7
									
								
								demo.py
									
									
									
									
									
								
							| @@ -32,6 +32,11 @@ if __name__ == "__main__": | ||||
|         default="./checkpoints/cotracker_stride_4_wind_8.pth", | ||||
|         help="cotracker model", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--device", | ||||
|         default="cuda", | ||||
|         help="Device to use for inference", | ||||
|     ) | ||||
|     parser.add_argument("--grid_size", type=int, default=0, help="Regular grid size") | ||||
|     parser.add_argument( | ||||
|         "--grid_query_frame", | ||||
| @@ -54,7 +59,7 @@ if __name__ == "__main__": | ||||
|     segm_mask = np.array(Image.open(os.path.join(args.mask_path))) | ||||
|     segm_mask = torch.from_numpy(segm_mask)[None, None] | ||||
|  | ||||
|     model = CoTrackerPredictor(checkpoint=args.checkpoint) | ||||
|     model = CoTrackerPredictor(checkpoint=args.checkpoint, device=args.device) | ||||
|  | ||||
|     pred_tracks, pred_visibility = model( | ||||
|         video, | ||||
|   | ||||
		Reference in New Issue
	
	Block a user