This commit is contained in:
Kevin Black 2023-11-16 22:36:46 +00:00
parent 378dd18298
commit 1958463f02
5 changed files with 227 additions and 68 deletions

View File

@ -35,7 +35,9 @@ class AestheticScorer(torch.nn.Module):
self.clip = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
self.mlp = MLP()
state_dict = torch.load(ASSETS_PATH.joinpath("sac+logos+ava1-l14-linearMSE.pth"))
state_dict = torch.load(
ASSETS_PATH.joinpath("sac+logos+ava1-l14-linearMSE.pth")
)
self.mlp.load_state_dict(state_dict)
self.dtype = dtype
self.eval()

View File

@ -20,9 +20,13 @@ def _left_broadcast(t, shape):
def _get_variance(self, timestep, prev_timestep):
alpha_prod_t = torch.gather(self.alphas_cumprod, 0, timestep.cpu()).to(timestep.device)
alpha_prod_t = torch.gather(self.alphas_cumprod, 0, timestep.cpu()).to(
timestep.device
)
alpha_prod_t_prev = torch.where(
prev_timestep.cpu() >= 0, self.alphas_cumprod.gather(0, prev_timestep.cpu()), self.final_alpha_cumprod
prev_timestep.cpu() >= 0,
self.alphas_cumprod.gather(0, prev_timestep.cpu()),
self.final_alpha_cumprod,
).to(timestep.device)
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
@ -86,31 +90,45 @@ def ddim_step_with_logprob(
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
prev_timestep = (
timestep - self.config.num_train_timesteps // self.num_inference_steps
)
# to prevent OOB on gather
prev_timestep = torch.clamp(prev_timestep, 0, self.config.num_train_timesteps - 1)
# 2. compute alphas, betas
alpha_prod_t = self.alphas_cumprod.gather(0, timestep.cpu())
alpha_prod_t_prev = torch.where(
prev_timestep.cpu() >= 0, self.alphas_cumprod.gather(0, prev_timestep.cpu()), self.final_alpha_cumprod
prev_timestep.cpu() >= 0,
self.alphas_cumprod.gather(0, prev_timestep.cpu()),
self.final_alpha_cumprod,
)
alpha_prod_t = _left_broadcast(alpha_prod_t, sample.shape).to(sample.device)
alpha_prod_t_prev = _left_broadcast(alpha_prod_t_prev, sample.shape).to(sample.device)
alpha_prod_t_prev = _left_broadcast(alpha_prod_t_prev, sample.shape).to(
sample.device
)
beta_prod_t = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if self.config.prediction_type == "epsilon":
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
pred_original_sample = (
sample - beta_prod_t ** (0.5) * model_output
) / alpha_prod_t ** (0.5)
pred_epsilon = model_output
elif self.config.prediction_type == "sample":
pred_original_sample = model_output
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
pred_epsilon = (
sample - alpha_prod_t ** (0.5) * pred_original_sample
) / beta_prod_t ** (0.5)
elif self.config.prediction_type == "v_prediction":
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
pred_original_sample = (alpha_prod_t**0.5) * sample - (
beta_prod_t**0.5
) * model_output
pred_epsilon = (alpha_prod_t**0.5) * model_output + (
beta_prod_t**0.5
) * sample
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
@ -133,13 +151,19 @@ def ddim_step_with_logprob(
if use_clipped_model_output:
# the pred_epsilon is always re-derived from the clipped x_0 in Glide
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
pred_epsilon = (
sample - alpha_prod_t ** (0.5) * pred_original_sample
) / beta_prod_t ** (0.5)
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (
0.5
) * pred_epsilon
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
prev_sample_mean = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
prev_sample_mean = (
alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
)
if prev_sample is not None and generator is not None:
raise ValueError(
@ -149,7 +173,10 @@ def ddim_step_with_logprob(
if prev_sample is None:
variance_noise = randn_tensor(
model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
model_output.shape,
generator=generator,
device=model_output.device,
dtype=model_output.dtype,
)
prev_sample = prev_sample_mean + std_dev_t * variance_noise

View File

@ -116,7 +116,15 @@ def pipeline_with_logprob(
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)
self.check_inputs(
prompt,
height,
width,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
@ -133,7 +141,11 @@ def pipeline_with_logprob(
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_encoder_lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None)
if cross_attention_kwargs is not None
else None
)
prompt_embeds = self._encode_prompt(
prompt,
device,
@ -172,7 +184,9 @@ def pipeline_with_logprob(
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = (
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
@ -187,27 +201,39 @@ def pipeline_with_logprob(
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
if do_classifier_free_guidance and guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
noise_pred = rescale_noise_cfg(
noise_pred, noise_pred_text, guidance_rescale=guidance_rescale
)
# compute the previous noisy sample x_t -> x_t-1
latents, log_prob = ddim_step_with_logprob(self.scheduler, noise_pred, t, latents, **extra_step_kwargs)
latents, log_prob = ddim_step_with_logprob(
self.scheduler, noise_pred, t, latents, **extra_step_kwargs
)
all_latents.append(latents)
all_log_probs.append(log_prob)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
image = self.vae.decode(
latents / self.vae.config.scaling_factor, return_dict=False
)[0]
image, has_nsfw_concept = self.run_safety_checker(
image, device, prompt_embeds.dtype
)
else:
image = latents
has_nsfw_concept = None
@ -217,7 +243,9 @@ def pipeline_with_logprob(
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
image = self.image_processor.postprocess(
image, output_type=output_type, do_denormalize=do_denormalize
)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:

View File

@ -35,7 +35,11 @@ def aesthetic_score():
scorer = AestheticScorer(dtype=torch.float32).cuda()
def _fn(images, prompts, metadata):
images = (images * 255).round().clamp(0, 255).to(torch.uint8)
if isinstance(images, torch.Tensor):
images = (images * 255).round().clamp(0, 255).to(torch.uint8)
else:
images = images.transpose(0, 3, 1, 2) # NHWC -> NCHW
images = torch.tensor(images, dtype=torch.uint8)
scores = scorer(images)
return scores, {}
@ -55,7 +59,9 @@ def llava_strict_satisfaction():
batch_size = 4
url = "http://127.0.0.1:8085"
sess = requests.Session()
retries = Retry(total=1000, backoff_factor=1, status_forcelist=[500], allowed_methods=False)
retries = Retry(
total=1000, backoff_factor=1, status_forcelist=[500], allowed_methods=False
)
sess.mount("http://", HTTPAdapter(max_retries=retries))
def _fn(images, prompts, metadata):
@ -121,7 +127,9 @@ def llava_bertscore():
batch_size = 16
url = "http://127.0.0.1:8085"
sess = requests.Session()
retries = Retry(total=1000, backoff_factor=1, status_forcelist=[500], allowed_methods=False)
retries = Retry(
total=1000, backoff_factor=1, status_forcelist=[500], allowed_methods=False
)
sess.mount("http://", HTTPAdapter(max_retries=retries))
def _fn(images, prompts, metadata):
@ -152,8 +160,11 @@ def llava_bertscore():
# format for LLaVA server
data = {
"images": jpeg_images,
"queries": [["Answer concisely: what is going on in this image?"]] * len(image_batch),
"answers": [[f"The image contains {prompt}"] for prompt in prompt_batch],
"queries": [["Answer concisely: what is going on in this image?"]]
* len(image_batch),
"answers": [
[f"The image contains {prompt}"] for prompt in prompt_batch
],
}
data_bytes = pickle.dumps(data)
@ -167,7 +178,9 @@ def llava_bertscore():
all_scores += scores.tolist()
# save the precision and f1 scores for analysis
all_info["precision"] += np.array(response_data["precision"]).squeeze().tolist()
all_info["precision"] += (
np.array(response_data["precision"]).squeeze().tolist()
)
all_info["f1"] += np.array(response_data["f1"]).squeeze().tolist()
all_info["outputs"] += np.array(response_data["outputs"]).squeeze().tolist()

View File

@ -48,7 +48,9 @@ def main(_):
config.resume_from = os.path.normpath(os.path.expanduser(config.resume_from))
if "checkpoint_" not in os.path.basename(config.resume_from):
# get the most recent checkpoint in this directory
checkpoints = list(filter(lambda x: "checkpoint_" in x, os.listdir(config.resume_from)))
checkpoints = list(
filter(lambda x: "checkpoint_" in x, os.listdir(config.resume_from))
)
if len(checkpoints) == 0:
raise ValueError(f"No checkpoints found in {config.resume_from}")
config.resume_from = os.path.join(
@ -72,11 +74,14 @@ def main(_):
# we always accumulate gradients across timesteps; we want config.train.gradient_accumulation_steps to be the
# number of *samples* we accumulate across, so we need to multiply by the number of training timesteps to get
# the total number of optimizer steps to accumulate across.
gradient_accumulation_steps=config.train.gradient_accumulation_steps * num_train_timesteps,
gradient_accumulation_steps=config.train.gradient_accumulation_steps
* num_train_timesteps,
)
if accelerator.is_main_process:
accelerator.init_trackers(
project_name="ddpo-pytorch", config=config.to_dict(), init_kwargs={"wandb": {"name": config.run_name}}
project_name="ddpo-pytorch",
config=config.to_dict(),
init_kwargs={"wandb": {"name": config.run_name}},
)
logger.info(f"\n{config}")
@ -84,7 +89,9 @@ def main(_):
set_seed(config.seed, device_specific=True)
# load scheduler, tokenizer and models.
pipeline = StableDiffusionPipeline.from_pretrained(config.pretrained.model, revision=config.pretrained.revision)
pipeline = StableDiffusionPipeline.from_pretrained(
config.pretrained.model, revision=config.pretrained.revision
)
# freeze parameters of models to save more memory
pipeline.vae.requires_grad_(False)
pipeline.text_encoder.requires_grad_(False)
@ -121,18 +128,24 @@ def main(_):
lora_attn_procs = {}
for name in pipeline.unet.attn_processors.keys():
cross_attention_dim = (
None if name.endswith("attn1.processor") else pipeline.unet.config.cross_attention_dim
None
if name.endswith("attn1.processor")
else pipeline.unet.config.cross_attention_dim
)
if name.startswith("mid_block"):
hidden_size = pipeline.unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(pipeline.unet.config.block_out_channels))[block_id]
hidden_size = list(reversed(pipeline.unet.config.block_out_channels))[
block_id
]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = pipeline.unet.config.block_out_channels[block_id]
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
lora_attn_procs[name] = LoRAAttnProcessor(
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim
)
pipeline.unet.set_attn_processor(lora_attn_procs)
# this is a hack to synchronize gradients properly. the module that registers the parameters we care about (in
@ -163,13 +176,19 @@ def main(_):
if config.use_lora and isinstance(models[0], AttnProcsLayers):
# pipeline.unet.load_attn_procs(input_dir)
tmp_unet = UNet2DConditionModel.from_pretrained(
config.pretrained.model, revision=config.pretrained.revision, subfolder="unet"
config.pretrained.model,
revision=config.pretrained.revision,
subfolder="unet",
)
tmp_unet.load_attn_procs(input_dir)
models[0].load_state_dict(AttnProcsLayers(tmp_unet.attn_processors).state_dict())
models[0].load_state_dict(
AttnProcsLayers(tmp_unet.attn_processors).state_dict()
)
del tmp_unet
elif not config.use_lora and isinstance(models[0], UNet2DConditionModel):
load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet")
load_model = UNet2DConditionModel.from_pretrained(
input_dir, subfolder="unet"
)
models[0].register_to_config(**load_model.config)
models[0].load_state_dict(load_model.state_dict())
del load_model
@ -243,20 +262,32 @@ def main(_):
executor = futures.ThreadPoolExecutor(max_workers=2)
# Train!
samples_per_epoch = config.sample.batch_size * accelerator.num_processes * config.sample.num_batches_per_epoch
samples_per_epoch = (
config.sample.batch_size
* accelerator.num_processes
* config.sample.num_batches_per_epoch
)
total_train_batch_size = (
config.train.batch_size * accelerator.num_processes * config.train.gradient_accumulation_steps
config.train.batch_size
* accelerator.num_processes
* config.train.gradient_accumulation_steps
)
logger.info("***** Running training *****")
logger.info(f" Num Epochs = {config.num_epochs}")
logger.info(f" Sample batch size per device = {config.sample.batch_size}")
logger.info(f" Train batch size per device = {config.train.batch_size}")
logger.info(f" Gradient Accumulation steps = {config.train.gradient_accumulation_steps}")
logger.info(
f" Gradient Accumulation steps = {config.train.gradient_accumulation_steps}"
)
logger.info("")
logger.info(f" Total number of samples per epoch = {samples_per_epoch}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}")
logger.info(f" Number of gradient updates per inner epoch = {samples_per_epoch // total_train_batch_size}")
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}"
)
logger.info(
f" Number of gradient updates per inner epoch = {samples_per_epoch // total_train_batch_size}"
)
logger.info(f" Number of inner epochs = {config.train.num_inner_epochs}")
assert config.sample.batch_size >= config.train.batch_size
@ -284,7 +315,10 @@ def main(_):
):
# generate prompts
prompts, prompt_metadata = zip(
*[prompt_fn(**config.prompt_fn_kwargs) for _ in range(config.sample.batch_size)]
*[
prompt_fn(**config.prompt_fn_kwargs)
for _ in range(config.sample.batch_size)
]
)
# encode prompts
@ -309,9 +343,13 @@ def main(_):
output_type="pt",
)
latents = torch.stack(latents, dim=1) # (batch_size, num_steps + 1, 4, 64, 64)
latents = torch.stack(
latents, dim=1
) # (batch_size, num_steps + 1, 4, 64, 64)
log_probs = torch.stack(log_probs, dim=1) # (batch_size, num_steps, 1)
timesteps = pipeline.scheduler.timesteps.repeat(config.sample.batch_size, 1) # (batch_size, num_steps)
timesteps = pipeline.scheduler.timesteps.repeat(
config.sample.batch_size, 1
) # (batch_size, num_steps)
# compute rewards asynchronously
rewards = executor.submit(reward_fn, images, prompts, prompt_metadata)
@ -323,8 +361,12 @@ def main(_):
"prompt_ids": prompt_ids,
"prompt_embeds": prompt_embeds,
"timesteps": timesteps,
"latents": latents[:, :-1], # each entry is the latent before timestep t
"next_latents": latents[:, 1:], # each entry is the latent after timestep t
"latents": latents[
:, :-1
], # each entry is the latent before timestep t
"next_latents": latents[
:, 1:
], # each entry is the latent after timestep t
"log_probs": log_probs,
"rewards": rewards,
}
@ -347,14 +389,21 @@ def main(_):
# this is a hack to force wandb to log the images as JPEGs instead of PNGs
with tempfile.TemporaryDirectory() as tmpdir:
for i, image in enumerate(images):
pil = Image.fromarray((image.cpu().numpy().transpose(1, 2, 0) * 255).astype(np.uint8))
pil = Image.fromarray(
(image.cpu().numpy().transpose(1, 2, 0) * 255).astype(np.uint8)
)
pil = pil.resize((256, 256))
pil.save(os.path.join(tmpdir, f"{i}.jpg"))
accelerator.log(
{
"images": [
wandb.Image(os.path.join(tmpdir, f"{i}.jpg"), caption=f"{prompt:.25} | {reward:.2f}")
for i, (prompt, reward) in enumerate(zip(prompts, rewards)) # only log rewards from process 0
wandb.Image(
os.path.join(tmpdir, f"{i}.jpg"),
caption=f"{prompt:.25} | {reward:.2f}",
)
for i, (prompt, reward) in enumerate(
zip(prompts, rewards)
) # only log rewards from process 0
],
},
step=global_step,
@ -365,7 +414,12 @@ def main(_):
# log rewards and images
accelerator.log(
{"reward": rewards, "epoch": epoch, "reward_mean": rewards.mean(), "reward_std": rewards.std()},
{
"reward": rewards,
"epoch": epoch,
"reward_mean": rewards.mean(),
"reward_std": rewards.std(),
},
step=global_step,
)
@ -373,7 +427,9 @@ def main(_):
if config.per_prompt_stat_tracking:
# gather the prompts across processes
prompt_ids = accelerator.gather(samples["prompt_ids"]).cpu().numpy()
prompts = pipeline.tokenizer.batch_decode(prompt_ids, skip_special_tokens=True)
prompts = pipeline.tokenizer.batch_decode(
prompt_ids, skip_special_tokens=True
)
advantages = stat_tracker.update(prompts, rewards)
else:
advantages = (rewards - rewards.mean()) / (rewards.std() + 1e-8)
@ -389,7 +445,10 @@ def main(_):
del samples["prompt_ids"]
total_batch_size, num_timesteps = samples["timesteps"].shape
assert total_batch_size == config.sample.batch_size * config.sample.num_batches_per_epoch
assert (
total_batch_size
== config.sample.batch_size * config.sample.num_batches_per_epoch
)
assert num_timesteps == config.sample.num_steps
#################### TRAINING ####################
@ -400,16 +459,27 @@ def main(_):
# shuffle along time dimension independently for each sample
perms = torch.stack(
[torch.randperm(num_timesteps, device=accelerator.device) for _ in range(total_batch_size)]
[
torch.randperm(num_timesteps, device=accelerator.device)
for _ in range(total_batch_size)
]
)
for key in ["timesteps", "latents", "next_latents", "log_probs"]:
samples[key] = samples[key][torch.arange(total_batch_size, device=accelerator.device)[:, None], perms]
samples[key] = samples[key][
torch.arange(total_batch_size, device=accelerator.device)[:, None],
perms,
]
# rebatch for training
samples_batched = {k: v.reshape(-1, config.train.batch_size, *v.shape[1:]) for k, v in samples.items()}
samples_batched = {
k: v.reshape(-1, config.train.batch_size, *v.shape[1:])
for k, v in samples.items()
}
# dict of lists -> list of dicts for easier iteration
samples_batched = [dict(zip(samples_batched, x)) for x in zip(*samples_batched.values())]
samples_batched = [
dict(zip(samples_batched, x)) for x in zip(*samples_batched.values())
]
# train
pipeline.unet.train()
@ -422,7 +492,9 @@ def main(_):
):
if config.train.cfg:
# concat negative prompts to sample prompts to avoid two forward passes
embeds = torch.cat([train_neg_prompt_embeds, sample["prompt_embeds"]])
embeds = torch.cat(
[train_neg_prompt_embeds, sample["prompt_embeds"]]
)
else:
embeds = sample["prompt_embeds"]
@ -442,8 +514,10 @@ def main(_):
embeds,
).sample
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + config.sample.guidance_scale * (
noise_pred_text - noise_pred_uncond
noise_pred = (
noise_pred_uncond
+ config.sample.guidance_scale
* (noise_pred_text - noise_pred_uncond)
)
else:
noise_pred = unet(
@ -463,12 +537,16 @@ def main(_):
# ppo logic
advantages = torch.clamp(
sample["advantages"], -config.train.adv_clip_max, config.train.adv_clip_max
sample["advantages"],
-config.train.adv_clip_max,
config.train.adv_clip_max,
)
ratio = torch.exp(log_prob - sample["log_probs"][:, j])
unclipped_loss = -advantages * ratio
clipped_loss = -advantages * torch.clamp(
ratio, 1.0 - config.train.clip_range, 1.0 + config.train.clip_range
ratio,
1.0 - config.train.clip_range,
1.0 + config.train.clip_range,
)
loss = torch.mean(torch.maximum(unclipped_loss, clipped_loss))
@ -476,14 +554,25 @@ def main(_):
# John Schulman says that (ratio - 1) - log(ratio) is a better
# estimator, but most existing code uses this so...
# http://joschu.net/blog/kl-approx.html
info["approx_kl"].append(0.5 * torch.mean((log_prob - sample["log_probs"][:, j]) ** 2))
info["clipfrac"].append(torch.mean((torch.abs(ratio - 1.0) > config.train.clip_range).float()))
info["approx_kl"].append(
0.5
* torch.mean((log_prob - sample["log_probs"][:, j]) ** 2)
)
info["clipfrac"].append(
torch.mean(
(
torch.abs(ratio - 1.0) > config.train.clip_range
).float()
)
)
info["loss"].append(loss)
# backward pass
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(unet.parameters(), config.train.max_grad_norm)
accelerator.clip_grad_norm_(
unet.parameters(), config.train.max_grad_norm
)
optimizer.step()
optimizer.zero_grad()