54 lines
1.7 KiB
Python
54 lines
1.7 KiB
Python
# Based on https://github.com/christophschuhmann/improved-aesthetic-predictor/blob/fe88a163f4661b4ddabba0751ff645e2e620746e/simple_inference.py
|
|
|
|
from importlib import resources
|
|
import torch
|
|
import torch.nn as nn
|
|
import numpy as np
|
|
from transformers import CLIPModel, CLIPProcessor
|
|
from PIL import Image
|
|
|
|
ASSETS_PATH = resources.files("ddpo_pytorch.assets")
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.layers = nn.Sequential(
|
|
nn.Linear(768, 1024),
|
|
nn.Dropout(0.2),
|
|
nn.Linear(1024, 128),
|
|
nn.Dropout(0.2),
|
|
nn.Linear(128, 64),
|
|
nn.Dropout(0.1),
|
|
nn.Linear(64, 16),
|
|
nn.Linear(16, 1),
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def forward(self, embed):
|
|
return self.layers(embed)
|
|
|
|
|
|
class AestheticScorer(torch.nn.Module):
|
|
def __init__(self, dtype):
|
|
super().__init__()
|
|
self.clip = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
|
|
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
|
self.mlp = MLP()
|
|
state_dict = torch.load(
|
|
ASSETS_PATH.joinpath("sac+logos+ava1-l14-linearMSE.pth")
|
|
)
|
|
self.mlp.load_state_dict(state_dict)
|
|
self.dtype = dtype
|
|
self.eval()
|
|
|
|
@torch.no_grad()
|
|
def __call__(self, images):
|
|
device = next(self.parameters()).device
|
|
inputs = self.processor(images=images, return_tensors="pt")
|
|
inputs = {k: v.to(self.dtype).to(device) for k, v in inputs.items()}
|
|
embed = self.clip.get_image_features(**inputs)
|
|
# normalize embedding
|
|
embed = embed / torch.linalg.vector_norm(embed, dim=-1, keepdim=True)
|
|
return self.mlp(embed).squeeze(1)
|