Continue implementation
This commit is contained in:
parent
6d848c3cdc
commit
92fc030123
@ -25,9 +25,9 @@ def get_config():
|
||||
train.learning_rate = 1e-4
|
||||
train.adam_beta1 = 0.9
|
||||
train.adam_beta2 = 0.999
|
||||
train.adam_weight_decay = 1e-2
|
||||
train.adam_weight_decay = 1e-4
|
||||
train.adam_epsilon = 1e-8
|
||||
train.gradient_accumulation_steps = 1
|
||||
train.gradient_accumulation_steps = 32
|
||||
train.max_grad_norm = 1.0
|
||||
train.num_inner_epochs = 1
|
||||
train.cfg = True
|
||||
@ -36,11 +36,11 @@ def get_config():
|
||||
|
||||
# sampling
|
||||
config.sample = sample = ml_collections.ConfigDict()
|
||||
sample.num_steps = 5
|
||||
sample.num_steps = 30
|
||||
sample.eta = 1.0
|
||||
sample.guidance_scale = 5.0
|
||||
sample.batch_size = 1
|
||||
sample.num_batches_per_epoch = 4
|
||||
sample.batch_size = 4
|
||||
sample.num_batches_per_epoch = 8
|
||||
|
||||
# prompting
|
||||
config.prompt_fn = "imagenet_animals"
|
||||
@ -50,7 +50,7 @@ def get_config():
|
||||
config.reward_fn = "jpeg_compressibility"
|
||||
|
||||
config.per_prompt_stat_tracking = ml_collections.ConfigDict()
|
||||
config.per_prompt_stat_tracking.buffer_size = 128
|
||||
config.per_prompt_stat_tracking.buffer_size = 64
|
||||
config.per_prompt_stat_tracking.min_count = 16
|
||||
|
||||
return config
|
@ -1,6 +1,9 @@
|
||||
# Copied from https://github.com/huggingface/diffusers/blob/fc6acb6b97e93d58cb22b5fee52d884d77ce84d8/src/diffusers/schedulers/scheduling_ddim.py
|
||||
# with the following modifications:
|
||||
# -
|
||||
# - It computes and returns the log prob of `prev_sample` given the UNet prediction.
|
||||
# - Instead of `variance_noise`, it takes `prev_sample` as an optional argument. If `prev_sample` is provided,
|
||||
# it uses it to compute the log prob.
|
||||
# - Timesteps can be a batched torch.Tensor.
|
||||
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
@ -11,6 +14,19 @@ from diffusers.utils import randn_tensor
|
||||
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput, DDIMScheduler
|
||||
|
||||
|
||||
def _get_variance(self, timestep, prev_timestep):
|
||||
alpha_prod_t = torch.gather(self.alphas_cumprod, 0, timestep.cpu()).to(timestep.device)
|
||||
alpha_prod_t_prev = torch.where(
|
||||
prev_timestep.cpu() >= 0, self.alphas_cumprod.gather(0, prev_timestep.cpu()), self.final_alpha_cumprod
|
||||
).to(timestep.device)
|
||||
beta_prod_t = 1 - alpha_prod_t
|
||||
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
||||
|
||||
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
|
||||
|
||||
return variance
|
||||
|
||||
|
||||
def ddim_step_with_logprob(
|
||||
self: DDIMScheduler,
|
||||
model_output: torch.FloatTensor,
|
||||
@ -66,16 +82,13 @@ def ddim_step_with_logprob(
|
||||
|
||||
# 1. get previous step value (=t-1)
|
||||
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
|
||||
prev_timestep = torch.clamp(prev_timestep, 0, self.config.num_train_timesteps - 1)
|
||||
|
||||
# 2. compute alphas, betas
|
||||
self.alphas_cumprod = self.alphas_cumprod.to(timestep.device)
|
||||
self.final_alpha_cumprod = self.final_alpha_cumprod.to(timestep.device)
|
||||
alpha_prod_t = self.alphas_cumprod.gather(0, timestep)
|
||||
alpha_prod_t_prev = torch.where(prev_timestep >= 0, self.alphas_cumprod.gather(0, prev_timestep), self.final_alpha_cumprod)
|
||||
print(timestep)
|
||||
print(alpha_prod_t)
|
||||
print(alpha_prod_t_prev)
|
||||
print(prev_timestep)
|
||||
alpha_prod_t = self.alphas_cumprod.gather(0, timestep.cpu()).to(timestep.device)
|
||||
alpha_prod_t_prev = torch.where(
|
||||
prev_timestep.cpu() >= 0, self.alphas_cumprod.gather(0, prev_timestep.cpu()), self.final_alpha_cumprod
|
||||
).to(timestep.device)
|
||||
|
||||
beta_prod_t = 1 - alpha_prod_t
|
||||
|
||||
@ -106,7 +119,7 @@ def ddim_step_with_logprob(
|
||||
|
||||
# 5. compute variance: "sigma_t(η)" -> see formula (16)
|
||||
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
|
||||
variance = self._get_variance(timestep, prev_timestep)
|
||||
variance = _get_variance(self, timestep, prev_timestep)
|
||||
std_dev_t = eta * variance ** (0.5)
|
||||
|
||||
if use_clipped_model_output:
|
||||
|
@ -12,8 +12,12 @@ from ddpo_pytorch.stat_tracking import PerPromptStatTracker
|
||||
from ddpo_pytorch.diffusers_patch.pipeline_with_logprob import pipeline_with_logprob
|
||||
from ddpo_pytorch.diffusers_patch.ddim_with_logprob import ddim_step_with_logprob
|
||||
import torch
|
||||
import wandb
|
||||
from functools import partial
|
||||
import tqdm
|
||||
|
||||
tqdm = partial(tqdm.tqdm, dynamic_ncols=True)
|
||||
|
||||
|
||||
FLAGS = flags.FLAGS
|
||||
config_flags.DEFINE_config_file("config", "config/base.py", "Training configuration.")
|
||||
@ -25,7 +29,7 @@ def main(_):
|
||||
# basic Accelerate and logging setup
|
||||
config = FLAGS.config
|
||||
accelerator = Accelerator(
|
||||
log_with="all",
|
||||
log_with="wandb",
|
||||
mixed_precision=config.mixed_precision,
|
||||
project_dir=config.logdir,
|
||||
)
|
||||
@ -163,11 +167,12 @@ def main(_):
|
||||
config.per_prompt_stat_tracking.min_count,
|
||||
)
|
||||
|
||||
global_step = 0
|
||||
for epoch in range(config.num_epochs):
|
||||
#################### SAMPLING ####################
|
||||
samples = []
|
||||
prompts = []
|
||||
for i in tqdm.tqdm(
|
||||
for i in tqdm(
|
||||
range(config.sample.num_batches_per_epoch),
|
||||
desc=f"Epoch {epoch}: sampling",
|
||||
disable=not accelerator.is_local_main_process,
|
||||
@ -216,7 +221,7 @@ def main(_):
|
||||
"latents": latents[:, :-1], # each entry is the latent before timestep t
|
||||
"next_latents": latents[:, 1:], # each entry is the latent after timestep t
|
||||
"log_probs": log_probs,
|
||||
"rewards": torch.as_tensor(rewards),
|
||||
"rewards": torch.as_tensor(rewards, device=accelerator.device),
|
||||
}
|
||||
)
|
||||
|
||||
@ -226,6 +231,13 @@ def main(_):
|
||||
# gather rewards across processes
|
||||
rewards = accelerator.gather(samples["rewards"]).cpu().numpy()
|
||||
|
||||
# log sample-related stuff
|
||||
accelerator.log({"reward": rewards, "epoch": epoch}, step=global_step)
|
||||
accelerator.log(
|
||||
{"images": [wandb.Image(image, caption=prompt) for image, prompt in zip(images, prompts)]},
|
||||
step=global_step,
|
||||
)
|
||||
|
||||
# per-prompt mean/std tracking
|
||||
if config.per_prompt_stat_tracking:
|
||||
# gather the prompts across processes
|
||||
@ -268,10 +280,11 @@ def main(_):
|
||||
samples_batched = [dict(zip(samples_batched, x)) for x in zip(*samples_batched.values())]
|
||||
|
||||
# train
|
||||
for i, sample in tqdm.tqdm(
|
||||
for i, sample in tqdm(
|
||||
list(enumerate(samples_batched)),
|
||||
desc=f"Outer epoch {epoch}, inner epoch {inner_epoch}: training",
|
||||
desc=f"Epoch {epoch}.{inner_epoch}: training",
|
||||
position=0,
|
||||
disable=not accelerator.is_local_main_process,
|
||||
):
|
||||
if config.train.cfg:
|
||||
# concat negative prompts to sample prompts to avoid two forward passes
|
||||
@ -279,11 +292,12 @@ def main(_):
|
||||
else:
|
||||
embeds = sample["prompt_embeds"]
|
||||
|
||||
for j in tqdm.trange(
|
||||
num_timesteps,
|
||||
for j in tqdm(
|
||||
range(num_timesteps),
|
||||
desc=f"Timestep",
|
||||
position=1,
|
||||
leave=False,
|
||||
disable=not accelerator.is_local_main_process,
|
||||
):
|
||||
with accelerator.accumulate(pipeline.unet):
|
||||
if config.train.cfg:
|
||||
@ -311,7 +325,7 @@ def main(_):
|
||||
|
||||
# ppo logic
|
||||
advantages = torch.clamp(
|
||||
sample["advantages"][:, j], -config.train.adv_clip_max, config.train.adv_clip_max
|
||||
sample["advantages"], -config.train.adv_clip_max, config.train.adv_clip_max
|
||||
)
|
||||
ratio = torch.exp(log_prob - sample["log_probs"][:, j])
|
||||
unclipped_loss = -advantages * ratio
|
||||
@ -326,9 +340,14 @@ def main(_):
|
||||
# estimator, but most existing code uses this so...
|
||||
# http://joschu.net/blog/kl-approx.html
|
||||
info["approx_kl"] = 0.5 * torch.mean((log_prob - sample["log_probs"][:, j]) ** 2)
|
||||
info["clipfrac"] = torch.mean(torch.abs(ratio - 1.0) > config.train.clip_range)
|
||||
info["clipfrac"] = torch.mean((torch.abs(ratio - 1.0) > config.train.clip_range).float())
|
||||
info["loss"] = loss
|
||||
|
||||
# log training-related stuff
|
||||
info.update({"epoch": epoch, "inner_epoch": inner_epoch, "timestep": j})
|
||||
accelerator.log(info, step=global_step)
|
||||
global_step += 1
|
||||
|
||||
# backward pass
|
||||
accelerator.backward(loss)
|
||||
if accelerator.sync_gradients:
|
||||
|
Loading…
Reference in New Issue
Block a user