47 lines
2.0 KiB
Python
47 lines
2.0 KiB
Python
|
##################################################
|
||
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||
|
##################################################
|
||
|
import torch, copy, random
|
||
|
import torch.utils.data as data
|
||
|
|
||
|
|
||
|
class SearchDataset(data.Dataset):
|
||
|
|
||
|
def __init__(self, name, data, train_split, valid_split, check=True):
|
||
|
self.datasetname = name
|
||
|
if isinstance(data, (list, tuple)): # new type of SearchDataset
|
||
|
assert len(data) == 2, 'invalid length: {:}'.format( len(data) )
|
||
|
self.train_data = data[0]
|
||
|
self.valid_data = data[1]
|
||
|
self.train_split = train_split.copy()
|
||
|
self.valid_split = valid_split.copy()
|
||
|
self.mode_str = 'V2' # new mode
|
||
|
else:
|
||
|
self.mode_str = 'V1' # old mode
|
||
|
self.data = data
|
||
|
self.train_split = train_split.copy()
|
||
|
self.valid_split = valid_split.copy()
|
||
|
if check:
|
||
|
intersection = set(train_split).intersection(set(valid_split))
|
||
|
assert len(intersection) == 0, 'the splitted train and validation sets should have no intersection'
|
||
|
self.length = len(self.train_split)
|
||
|
|
||
|
def __repr__(self):
|
||
|
return ('{name}(name={datasetname}, train={tr_L}, valid={val_L}, version={ver})'.format(name=self.__class__.__name__, datasetname=self.datasetname, tr_L=len(self.train_split), val_L=len(self.valid_split), ver=self.mode_str))
|
||
|
|
||
|
def __len__(self):
|
||
|
return self.length
|
||
|
|
||
|
def __getitem__(self, index):
|
||
|
assert index >= 0 and index < self.length, 'invalid index = {:}'.format(index)
|
||
|
train_index = self.train_split[index]
|
||
|
valid_index = random.choice( self.valid_split )
|
||
|
if self.mode_str == 'V1':
|
||
|
train_image, train_label = self.data[train_index]
|
||
|
valid_image, valid_label = self.data[valid_index]
|
||
|
elif self.mode_str == 'V2':
|
||
|
train_image, train_label = self.train_data[train_index]
|
||
|
valid_image, valid_label = self.valid_data[valid_index]
|
||
|
else: raise ValueError('invalid mode : {:}'.format(self.mode_str))
|
||
|
return train_image, train_label, valid_image, valid_label
|