158 lines
5.4 KiB
Python
158 lines
5.4 KiB
Python
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
from .initialization import initialize_resnet
|
||
|
from .SharedUtils import additive_func
|
||
|
|
||
|
|
||
|
class Downsample(nn.Module):
|
||
|
|
||
|
def __init__(self, nIn, nOut, stride):
|
||
|
super(Downsample, self).__init__()
|
||
|
assert stride == 2 and nOut == 2*nIn, 'stride:{} IO:{},{}'.format(stride, nIn, nOut)
|
||
|
self.in_dim = nIn
|
||
|
self.out_dim = nOut
|
||
|
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||
|
self.conv = nn.Conv2d(nIn, nOut, kernel_size=1, stride=1, padding=0, bias=False)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.avg(x)
|
||
|
out = self.conv(x)
|
||
|
return out
|
||
|
|
||
|
|
||
|
class ConvBNReLU(nn.Module):
|
||
|
|
||
|
def __init__(self, nIn, nOut, kernel, stride, padding, bias, relu):
|
||
|
super(ConvBNReLU, self).__init__()
|
||
|
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, bias=bias)
|
||
|
self.bn = nn.BatchNorm2d(nOut)
|
||
|
if relu: self.relu = nn.ReLU(inplace=True)
|
||
|
else : self.relu = None
|
||
|
self.out_dim = nOut
|
||
|
self.num_conv = 1
|
||
|
|
||
|
def forward(self, x):
|
||
|
conv = self.conv( x )
|
||
|
bn = self.bn( conv )
|
||
|
if self.relu: return self.relu( bn )
|
||
|
else : return bn
|
||
|
|
||
|
|
||
|
class ResNetBasicblock(nn.Module):
|
||
|
expansion = 1
|
||
|
def __init__(self, inplanes, planes, stride):
|
||
|
super(ResNetBasicblock, self).__init__()
|
||
|
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||
|
self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, True)
|
||
|
self.conv_b = ConvBNReLU( planes, planes, 3, 1, 1, False, False)
|
||
|
if stride == 2:
|
||
|
self.downsample = Downsample(inplanes, planes, stride)
|
||
|
elif inplanes != planes:
|
||
|
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, False)
|
||
|
else:
|
||
|
self.downsample = None
|
||
|
self.out_dim = planes
|
||
|
self.num_conv = 2
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
|
||
|
basicblock = self.conv_a(inputs)
|
||
|
basicblock = self.conv_b(basicblock)
|
||
|
|
||
|
if self.downsample is not None:
|
||
|
residual = self.downsample(inputs)
|
||
|
else:
|
||
|
residual = inputs
|
||
|
out = additive_func(residual, basicblock)
|
||
|
return F.relu(out, inplace=True)
|
||
|
|
||
|
|
||
|
|
||
|
class ResNetBottleneck(nn.Module):
|
||
|
expansion = 4
|
||
|
def __init__(self, inplanes, planes, stride):
|
||
|
super(ResNetBottleneck, self).__init__()
|
||
|
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||
|
self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, True)
|
||
|
self.conv_3x3 = ConvBNReLU( planes, planes, 3, stride, 1, False, True)
|
||
|
self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, False)
|
||
|
if stride == 2:
|
||
|
self.downsample = Downsample(inplanes, planes*self.expansion, stride)
|
||
|
elif inplanes != planes*self.expansion:
|
||
|
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, False)
|
||
|
else:
|
||
|
self.downsample = None
|
||
|
self.out_dim = planes * self.expansion
|
||
|
self.num_conv = 3
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
|
||
|
bottleneck = self.conv_1x1(inputs)
|
||
|
bottleneck = self.conv_3x3(bottleneck)
|
||
|
bottleneck = self.conv_1x4(bottleneck)
|
||
|
|
||
|
if self.downsample is not None:
|
||
|
residual = self.downsample(inputs)
|
||
|
else:
|
||
|
residual = inputs
|
||
|
out = additive_func(residual, bottleneck)
|
||
|
return F.relu(out, inplace=True)
|
||
|
|
||
|
|
||
|
|
||
|
class CifarResNet(nn.Module):
|
||
|
|
||
|
def __init__(self, block_name, depth, num_classes, zero_init_residual):
|
||
|
super(CifarResNet, self).__init__()
|
||
|
|
||
|
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||
|
if block_name == 'ResNetBasicblock':
|
||
|
block = ResNetBasicblock
|
||
|
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
|
||
|
layer_blocks = (depth - 2) // 6
|
||
|
elif block_name == 'ResNetBottleneck':
|
||
|
block = ResNetBottleneck
|
||
|
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
|
||
|
layer_blocks = (depth - 2) // 9
|
||
|
else:
|
||
|
raise ValueError('invalid block : {:}'.format(block_name))
|
||
|
|
||
|
self.message = 'CifarResNet : Block : {:}, Depth : {:}, Layers for each block : {:}'.format(block_name, depth, layer_blocks)
|
||
|
self.num_classes = num_classes
|
||
|
self.channels = [16]
|
||
|
self.layers = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, True) ] )
|
||
|
for stage in range(3):
|
||
|
for iL in range(layer_blocks):
|
||
|
iC = self.channels[-1]
|
||
|
planes = 16 * (2**stage)
|
||
|
stride = 2 if stage > 0 and iL == 0 else 1
|
||
|
module = block(iC, planes, stride)
|
||
|
self.channels.append( module.out_dim )
|
||
|
self.layers.append ( module )
|
||
|
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride)
|
||
|
|
||
|
self.avgpool = nn.AvgPool2d(8)
|
||
|
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||
|
assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
|
||
|
|
||
|
self.apply(initialize_resnet)
|
||
|
if zero_init_residual:
|
||
|
for m in self.modules():
|
||
|
if isinstance(m, ResNetBasicblock):
|
||
|
nn.init.constant_(m.conv_b.bn.weight, 0)
|
||
|
elif isinstance(m, ResNetBottleneck):
|
||
|
nn.init.constant_(m.conv_1x4.bn.weight, 0)
|
||
|
|
||
|
def get_message(self):
|
||
|
return self.message
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
x = inputs
|
||
|
for i, layer in enumerate(self.layers):
|
||
|
x = layer( x )
|
||
|
features = self.avgpool(x)
|
||
|
features = features.view(features.size(0), -1)
|
||
|
logits = self.classifier(features)
|
||
|
return features, logits
|