186 lines
9.1 KiB
Python
186 lines
9.1 KiB
Python
|
##################################################
|
||
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||
|
##################################################
|
||
|
from os import path as osp
|
||
|
from typing import List, Text
|
||
|
import torch
|
||
|
|
||
|
__all__ = ['change_key', 'get_cell_based_tiny_net', 'get_search_spaces', 'get_cifar_models', 'get_imagenet_models', \
|
||
|
'obtain_model', 'obtain_search_model', 'load_net_from_checkpoint', \
|
||
|
'CellStructure', 'CellArchitectures'
|
||
|
]
|
||
|
|
||
|
# useful modules
|
||
|
from config_utils import dict2config
|
||
|
from .SharedUtils import change_key
|
||
|
from .cell_searchs import CellStructure, CellArchitectures
|
||
|
|
||
|
|
||
|
# Cell-based NAS Models
|
||
|
def get_cell_based_tiny_net(config):
|
||
|
if isinstance(config, dict): config = dict2config(config, None) # to support the argument being a dict
|
||
|
super_type = getattr(config, 'super_type', 'basic')
|
||
|
group_names = ['DARTS-V1', 'DARTS-V2', 'GDAS', 'SETN', 'ENAS', 'RANDOM']
|
||
|
if super_type == 'basic' and config.name in group_names:
|
||
|
from .cell_searchs import nas201_super_nets as nas_super_nets
|
||
|
try:
|
||
|
return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space, config.affine, config.track_running_stats)
|
||
|
except:
|
||
|
return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space)
|
||
|
elif super_type == 'nasnet-super':
|
||
|
from .cell_searchs import nasnet_super_nets as nas_super_nets
|
||
|
return nas_super_nets[config.name](config.C, config.N, config.steps, config.multiplier, \
|
||
|
config.stem_multiplier, config.num_classes, config.space, config.affine, config.track_running_stats)
|
||
|
elif config.name == 'infer.tiny':
|
||
|
from .cell_infers import TinyNetwork
|
||
|
if hasattr(config, 'genotype'):
|
||
|
genotype = config.genotype
|
||
|
elif hasattr(config, 'arch_str'):
|
||
|
genotype = CellStructure.str2structure(config.arch_str)
|
||
|
else: raise ValueError('Can not find genotype from this config : {:}'.format(config))
|
||
|
return TinyNetwork(config.C, config.N, genotype, config.num_classes)
|
||
|
elif config.name == 'infer.shape.tiny':
|
||
|
from .shape_infers import DynamicShapeTinyNet
|
||
|
if isinstance(config.channels, str):
|
||
|
channels = tuple([int(x) for x in config.channels.split(':')])
|
||
|
else: channels = config.channels
|
||
|
genotype = CellStructure.str2structure(config.genotype)
|
||
|
return DynamicShapeTinyNet(channels, genotype, config.num_classes)
|
||
|
elif config.name == 'infer.nasnet-cifar':
|
||
|
from .cell_infers import NASNetonCIFAR
|
||
|
raise NotImplementedError
|
||
|
else:
|
||
|
raise ValueError('invalid network name : {:}'.format(config.name))
|
||
|
|
||
|
|
||
|
# obtain the search space, i.e., a dict mapping the operation name into a python-function for this op
|
||
|
def get_search_spaces(xtype, name) -> List[Text]:
|
||
|
if xtype == 'cell':
|
||
|
from .cell_operations import SearchSpaceNames
|
||
|
assert name in SearchSpaceNames, 'invalid name [{:}] in {:}'.format(name, SearchSpaceNames.keys())
|
||
|
return SearchSpaceNames[name]
|
||
|
else:
|
||
|
raise ValueError('invalid search-space type is {:}'.format(xtype))
|
||
|
|
||
|
|
||
|
def get_cifar_models(config, extra_path=None):
|
||
|
super_type = getattr(config, 'super_type', 'basic')
|
||
|
if super_type == 'basic':
|
||
|
from .CifarResNet import CifarResNet
|
||
|
from .CifarDenseNet import DenseNet
|
||
|
from .CifarWideResNet import CifarWideResNet
|
||
|
if config.arch == 'resnet':
|
||
|
return CifarResNet(config.module, config.depth, config.class_num, config.zero_init_residual)
|
||
|
elif config.arch == 'densenet':
|
||
|
return DenseNet(config.growthRate, config.depth, config.reduction, config.class_num, config.bottleneck)
|
||
|
elif config.arch == 'wideresnet':
|
||
|
return CifarWideResNet(config.depth, config.wide_factor, config.class_num, config.dropout)
|
||
|
else:
|
||
|
raise ValueError('invalid module type : {:}'.format(config.arch))
|
||
|
elif super_type.startswith('infer'):
|
||
|
from .shape_infers import InferWidthCifarResNet
|
||
|
from .shape_infers import InferDepthCifarResNet
|
||
|
from .shape_infers import InferCifarResNet
|
||
|
from .cell_infers import NASNetonCIFAR
|
||
|
assert len(super_type.split('-')) == 2, 'invalid super_type : {:}'.format(super_type)
|
||
|
infer_mode = super_type.split('-')[1]
|
||
|
if infer_mode == 'width':
|
||
|
return InferWidthCifarResNet(config.module, config.depth, config.xchannels, config.class_num, config.zero_init_residual)
|
||
|
elif infer_mode == 'depth':
|
||
|
return InferDepthCifarResNet(config.module, config.depth, config.xblocks, config.class_num, config.zero_init_residual)
|
||
|
elif infer_mode == 'shape':
|
||
|
return InferCifarResNet(config.module, config.depth, config.xblocks, config.xchannels, config.class_num, config.zero_init_residual)
|
||
|
elif infer_mode == 'nasnet.cifar':
|
||
|
genotype = config.genotype
|
||
|
if extra_path is not None: # reload genotype by extra_path
|
||
|
if not osp.isfile(extra_path): raise ValueError('invalid extra_path : {:}'.format(extra_path))
|
||
|
xdata = torch.load(extra_path)
|
||
|
current_epoch = xdata['epoch']
|
||
|
genotype = xdata['genotypes'][current_epoch-1]
|
||
|
C = config.C if hasattr(config, 'C') else config.ichannel
|
||
|
N = config.N if hasattr(config, 'N') else config.layers
|
||
|
return NASNetonCIFAR(C, N, config.stem_multi, config.class_num, genotype, config.auxiliary)
|
||
|
else:
|
||
|
raise ValueError('invalid infer-mode : {:}'.format(infer_mode))
|
||
|
else:
|
||
|
raise ValueError('invalid super-type : {:}'.format(super_type))
|
||
|
|
||
|
|
||
|
def get_imagenet_models(config):
|
||
|
super_type = getattr(config, 'super_type', 'basic')
|
||
|
if super_type == 'basic':
|
||
|
from .ImageNet_ResNet import ResNet
|
||
|
from .ImageNet_MobileNetV2 import MobileNetV2
|
||
|
if config.arch == 'resnet':
|
||
|
return ResNet(config.block_name, config.layers, config.deep_stem, config.class_num, config.zero_init_residual, config.groups, config.width_per_group)
|
||
|
elif config.arch == 'mobilenet_v2':
|
||
|
return MobileNetV2(config.class_num, config.width_multi, config.input_channel, config.last_channel, 'InvertedResidual', config.dropout)
|
||
|
else:
|
||
|
raise ValueError('invalid arch : {:}'.format( config.arch ))
|
||
|
elif super_type.startswith('infer'): # NAS searched architecture
|
||
|
assert len(super_type.split('-')) == 2, 'invalid super_type : {:}'.format(super_type)
|
||
|
infer_mode = super_type.split('-')[1]
|
||
|
if infer_mode == 'shape':
|
||
|
from .shape_infers import InferImagenetResNet
|
||
|
from .shape_infers import InferMobileNetV2
|
||
|
if config.arch == 'resnet':
|
||
|
return InferImagenetResNet(config.block_name, config.layers, config.xblocks, config.xchannels, config.deep_stem, config.class_num, config.zero_init_residual)
|
||
|
elif config.arch == "MobileNetV2":
|
||
|
return InferMobileNetV2(config.class_num, config.xchannels, config.xblocks, config.dropout)
|
||
|
else:
|
||
|
raise ValueError('invalid arch-mode : {:}'.format(config.arch))
|
||
|
else:
|
||
|
raise ValueError('invalid infer-mode : {:}'.format(infer_mode))
|
||
|
else:
|
||
|
raise ValueError('invalid super-type : {:}'.format(super_type))
|
||
|
|
||
|
|
||
|
# Try to obtain the network by config.
|
||
|
def obtain_model(config, extra_path=None):
|
||
|
if config.dataset == 'cifar':
|
||
|
return get_cifar_models(config, extra_path)
|
||
|
elif config.dataset == 'imagenet':
|
||
|
return get_imagenet_models(config)
|
||
|
else:
|
||
|
raise ValueError('invalid dataset in the model config : {:}'.format(config))
|
||
|
|
||
|
|
||
|
def obtain_search_model(config):
|
||
|
if config.dataset == 'cifar':
|
||
|
if config.arch == 'resnet':
|
||
|
from .shape_searchs import SearchWidthCifarResNet
|
||
|
from .shape_searchs import SearchDepthCifarResNet
|
||
|
from .shape_searchs import SearchShapeCifarResNet
|
||
|
if config.search_mode == 'width':
|
||
|
return SearchWidthCifarResNet(config.module, config.depth, config.class_num)
|
||
|
elif config.search_mode == 'depth':
|
||
|
return SearchDepthCifarResNet(config.module, config.depth, config.class_num)
|
||
|
elif config.search_mode == 'shape':
|
||
|
return SearchShapeCifarResNet(config.module, config.depth, config.class_num)
|
||
|
else: raise ValueError('invalid search mode : {:}'.format(config.search_mode))
|
||
|
elif config.arch == 'simres':
|
||
|
from .shape_searchs import SearchWidthSimResNet
|
||
|
if config.search_mode == 'width':
|
||
|
return SearchWidthSimResNet(config.depth, config.class_num)
|
||
|
else: raise ValueError('invalid search mode : {:}'.format(config.search_mode))
|
||
|
else:
|
||
|
raise ValueError('invalid arch : {:} for dataset [{:}]'.format(config.arch, config.dataset))
|
||
|
elif config.dataset == 'imagenet':
|
||
|
from .shape_searchs import SearchShapeImagenetResNet
|
||
|
assert config.search_mode == 'shape', 'invalid search-mode : {:}'.format( config.search_mode )
|
||
|
if config.arch == 'resnet':
|
||
|
return SearchShapeImagenetResNet(config.block_name, config.layers, config.deep_stem, config.class_num)
|
||
|
else:
|
||
|
raise ValueError('invalid model config : {:}'.format(config))
|
||
|
else:
|
||
|
raise ValueError('invalid dataset in the model config : {:}'.format(config))
|
||
|
|
||
|
|
||
|
def load_net_from_checkpoint(checkpoint):
|
||
|
assert osp.isfile(checkpoint), 'checkpoint {:} does not exist'.format(checkpoint)
|
||
|
checkpoint = torch.load(checkpoint)
|
||
|
model_config = dict2config(checkpoint['model-config'], None)
|
||
|
model = obtain_model(model_config)
|
||
|
model.load_state_dict(checkpoint['base-model'])
|
||
|
return model
|