naswot/models/shape_searchs/SearchCifarResNet_depth.py

341 lines
14 KiB
Python
Raw Permalink Normal View History

2020-06-03 13:59:01 +02:00
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import math, torch
from collections import OrderedDict
from bisect import bisect_right
import torch.nn as nn
from ..initialization import initialize_resnet
from ..SharedUtils import additive_func
from .SoftSelect import select2withP, ChannelWiseInter
from .SoftSelect import linear_forward
from .SoftSelect import get_width_choices
def get_depth_choices(nDepth, return_num):
if nDepth == 2:
choices = (1, 2)
elif nDepth == 3:
choices = (1, 2, 3)
elif nDepth > 3:
choices = list(range(1, nDepth+1, 2))
if choices[-1] < nDepth: choices.append(nDepth)
else:
raise ValueError('invalid nDepth : {:}'.format(nDepth))
if return_num: return len(choices)
else : return choices
class ConvBNReLU(nn.Module):
num_conv = 1
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
super(ConvBNReLU, self).__init__()
self.InShape = None
self.OutShape = None
self.choices = get_width_choices(nOut)
self.register_buffer('choices_tensor', torch.Tensor( self.choices ))
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else : self.avg = None
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
if has_bn : self.bn = nn.BatchNorm2d(nOut)
else : self.bn = None
if has_relu: self.relu = nn.ReLU(inplace=False)
else : self.relu = None
self.in_dim = nIn
self.out_dim = nOut
def get_flops(self, divide=1):
iC, oC = self.in_dim, self.out_dim
assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:} | {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels)
assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape)
assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape)
#conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups)
all_positions = self.OutShape[0] * self.OutShape[1]
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
if self.conv.bias is not None: flops += all_positions / divide
return flops
def forward(self, inputs):
if self.avg : out = self.avg( inputs )
else : out = inputs
conv = self.conv( out )
if self.bn : out = self.bn( conv )
else : out = conv
if self.relu: out = self.relu( out )
else : out = out
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
self.OutShape = (out.size(-2) , out.size(-1))
return out
class ResNetBasicblock(nn.Module):
expansion = 1
num_conv = 2
def __init__(self, inplanes, planes, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_b = ConvBNReLU( planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
elif inplanes != planes:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
self.out_dim = planes
self.search_mode = 'basic'
def get_flops(self, divide=1):
flop_A = self.conv_a.get_flops(divide)
flop_B = self.conv_b.get_flops(divide)
if hasattr(self.downsample, 'get_flops'):
flop_C = self.downsample.get_flops(divide)
else:
flop_C = 0
return flop_A + flop_B + flop_C
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None: residual = self.downsample(inputs)
else : residual = inputs
out = additive_func(residual, basicblock)
return nn.functional.relu(out, inplace=True)
class ResNetBottleneck(nn.Module):
expansion = 4
num_conv = 3
def __init__(self, inplanes, planes, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_3x3 = ConvBNReLU( planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
elif inplanes != planes*self.expansion:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
self.out_dim = planes * self.expansion
self.search_mode = 'basic'
def get_range(self):
return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range()
def get_flops(self, divide):
flop_A = self.conv_1x1.get_flops(divide)
flop_B = self.conv_3x3.get_flops(divide)
flop_C = self.conv_1x4.get_flops(divide)
if hasattr(self.downsample, 'get_flops'):
flop_D = self.downsample.get_flops(divide)
else:
flop_D = 0
return flop_A + flop_B + flop_C + flop_D
def forward(self, inputs):
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
if self.downsample is not None: residual = self.downsample(inputs)
else : residual = inputs
out = additive_func(residual, bottleneck)
return nn.functional.relu(out, inplace=True)
class SearchDepthCifarResNet(nn.Module):
def __init__(self, block_name, depth, num_classes):
super(SearchDepthCifarResNet, self).__init__()
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == 'ResNetBasicblock':
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
layer_blocks = (depth - 2) // 6
elif block_name == 'ResNetBottleneck':
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
layer_blocks = (depth - 2) // 9
else:
raise ValueError('invalid block : {:}'.format(block_name))
self.message = 'SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
self.num_classes = num_classes
self.channels = [16]
self.layers = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
self.InShape = None
self.depth_info = OrderedDict()
self.depth_at_i = OrderedDict()
for stage in range(3):
cur_block_choices = get_depth_choices(layer_blocks, False)
assert cur_block_choices[-1] == layer_blocks, 'stage={:}, {:} vs {:}'.format(stage, cur_block_choices, layer_blocks)
self.message += "\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format(stage, cur_block_choices, layer_blocks)
block_choices, xstart = [], len(self.layers)
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 16 * (2**stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iC, planes, stride)
self.channels.append( module.out_dim )
self.layers.append ( module )
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride)
# added for depth
layer_index = len(self.layers) - 1
if iL + 1 in cur_block_choices: block_choices.append( layer_index )
if iL + 1 == layer_blocks:
self.depth_info[layer_index] = {'choices': block_choices,
'stage' : stage,
'xstart' : xstart}
self.depth_info_list = []
for xend, info in self.depth_info.items():
self.depth_info_list.append( (xend, info) )
xstart, xstage = info['xstart'], info['stage']
for ilayer in range(xstart, xend+1):
idx = bisect_right(info['choices'], ilayer-1)
self.depth_at_i[ilayer] = (xstage, idx)
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(module.out_dim, num_classes)
self.InShape = None
self.tau = -1
self.search_mode = 'basic'
#assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
self.register_parameter('depth_attentions', nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True))))
nn.init.normal_(self.depth_attentions, 0, 0.01)
self.apply(initialize_resnet)
def arch_parameters(self):
return [self.depth_attentions]
def base_parameters(self):
return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters())
def get_flop(self, mode, config_dict, extra_info):
if config_dict is not None: config_dict = config_dict.copy()
# select depth
if mode == 'genotype':
with torch.no_grad():
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
choices = torch.argmax(depth_probs, dim=1).cpu().tolist()
elif mode == 'max':
choices = [depth_probs.size(1)-1 for _ in range(depth_probs.size(0))]
elif mode == 'random':
with torch.no_grad():
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
choices = torch.multinomial(depth_probs, 1, False).cpu().tolist()
else:
raise ValueError('invalid mode : {:}'.format(mode))
selected_layers = []
for choice, xvalue in zip(choices, self.depth_info_list):
xtemp = xvalue[1]['choices'][choice] - xvalue[1]['xstart'] + 1
selected_layers.append(xtemp)
flop = 0
for i, layer in enumerate(self.layers):
if i in self.depth_at_i:
xstagei, xatti = self.depth_at_i[i]
if xatti <= choices[xstagei]: # leave this depth
flop+= layer.get_flops()
else:
flop+= 0 # do not use this layer
else:
flop+= layer.get_flops()
# the last fc layer
flop += self.classifier.in_features * self.classifier.out_features
if config_dict is None:
return flop / 1e6
else:
config_dict['xblocks'] = selected_layers
config_dict['super_type'] = 'infer-depth'
config_dict['estimated_FLOP'] = flop / 1e6
return flop / 1e6, config_dict
def get_arch_info(self):
string = "for depth, there are {:} attention probabilities.".format(len(self.depth_attentions))
string+= '\n{:}'.format(self.depth_info)
discrepancy = []
with torch.no_grad():
for i, att in enumerate(self.depth_attentions):
prob = nn.functional.softmax(att, dim=0)
prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist()
prob = ['{:.3f}'.format(x) for x in prob]
xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.depth_attentions), ' '.join(prob))
logt = ['{:.4f}'.format(x) for x in att.cpu().tolist()]
xstring += ' || {:17s}'.format(' '.join(logt))
prob = sorted( [float(x) for x in prob] )
disc = prob[-1] - prob[-2]
xstring += ' || discrepancy={:.2f} || select={:}/{:}'.format(disc, selc, len(prob))
discrepancy.append( disc )
string += '\n{:}'.format(xstring)
return string, discrepancy
def set_tau(self, tau_max, tau_min, epoch_ratio):
assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio)
tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
self.tau = tau
def get_message(self):
return self.message
def forward(self, inputs):
if self.search_mode == 'basic':
return self.basic_forward(inputs)
elif self.search_mode == 'search':
return self.search_forward(inputs)
else:
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def search_forward(self, inputs):
flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
flop_depth_probs = torch.flip( torch.cumsum( torch.flip(flop_depth_probs, [1]), 1 ), [1] )
selected_depth_probs = select2withP(self.depth_attentions, self.tau, True)
x, flops = inputs, []
feature_maps = []
for i, layer in enumerate(self.layers):
layer_i = layer( x )
feature_maps.append( layer_i )
if i in self.depth_info: # aggregate the information
choices = self.depth_info[i]['choices']
xstagei = self.depth_info[i]['stage']
possible_tensors = []
for tempi, A in enumerate(choices):
xtensor = feature_maps[A]
possible_tensors.append( xtensor )
weighted_sum = sum( xtensor * W for xtensor, W in zip(possible_tensors, selected_depth_probs[xstagei]) )
x = weighted_sum
else:
x = layer_i
if i in self.depth_at_i:
xstagei, xatti = self.depth_at_i[i]
#print ('layer-{:03d}, stage={:}, att={:}, prob={:}, flop={:}'.format(i, xstagei, xatti, flop_depth_probs[xstagei, xatti].item(), layer.get_flops(1e6)))
x_expected_flop = flop_depth_probs[xstagei, xatti] * layer.get_flops(1e6)
else:
x_expected_flop = layer.get_flops(1e6)
flops.append( x_expected_flop )
flops.append( (self.classifier.in_features * self.classifier.out_features*1.0/1e6) )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = linear_forward(features, self.classifier)
return logits, torch.stack( [sum(flops)] )
def basic_forward(self, inputs):
if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1))
x = inputs
for i, layer in enumerate(self.layers):
x = layer( x )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits