298 lines
12 KiB
Python
298 lines
12 KiB
Python
##################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
##################################################
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
__all__ = ['OPS', 'ResNetBasicblock', 'SearchSpaceNames']
|
|
|
|
OPS = {
|
|
'none' : lambda C_in, C_out, stride, affine, track_running_stats: Zero(C_in, C_out, stride),
|
|
'avg_pool_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: POOLING(C_in, C_out, stride, 'avg', affine, track_running_stats),
|
|
'max_pool_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: POOLING(C_in, C_out, stride, 'max', affine, track_running_stats),
|
|
'nor_conv_7x7' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (7,7), (stride,stride), (3,3), (1,1), affine, track_running_stats),
|
|
'nor_conv_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1), affine, track_running_stats),
|
|
'nor_conv_1x1' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (1,1), (stride,stride), (0,0), (1,1), affine, track_running_stats),
|
|
'dua_sepc_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1), affine, track_running_stats),
|
|
'dua_sepc_5x5' : lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(C_in, C_out, (5,5), (stride,stride), (2,2), (1,1), affine, track_running_stats),
|
|
'dil_sepc_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: SepConv(C_in, C_out, (3,3), (stride,stride), (2,2), (2,2), affine, track_running_stats),
|
|
'dil_sepc_5x5' : lambda C_in, C_out, stride, affine, track_running_stats: SepConv(C_in, C_out, (5,5), (stride,stride), (4,4), (2,2), affine, track_running_stats),
|
|
'skip_connect' : lambda C_in, C_out, stride, affine, track_running_stats: Identity() if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride, affine, track_running_stats),
|
|
}
|
|
|
|
CONNECT_NAS_BENCHMARK = ['none', 'skip_connect', 'nor_conv_3x3']
|
|
NAS_BENCH_201 = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3']
|
|
DARTS_SPACE = ['none', 'skip_connect', 'dua_sepc_3x3', 'dua_sepc_5x5', 'dil_sepc_3x3', 'dil_sepc_5x5', 'avg_pool_3x3', 'max_pool_3x3']
|
|
|
|
SearchSpaceNames = {'connect-nas' : CONNECT_NAS_BENCHMARK,
|
|
'nas-bench-201': NAS_BENCH_201,
|
|
'darts' : DARTS_SPACE}
|
|
|
|
|
|
class ReLUConvBN(nn.Module):
|
|
|
|
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True):
|
|
super(ReLUConvBN, self).__init__()
|
|
self.op = nn.Sequential(
|
|
nn.ReLU(inplace=False),
|
|
nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False),
|
|
nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats)
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.op(x)
|
|
|
|
|
|
class SepConv(nn.Module):
|
|
|
|
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True):
|
|
super(SepConv, self).__init__()
|
|
self.op = nn.Sequential(
|
|
nn.ReLU(inplace=False),
|
|
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=C_in, bias=False),
|
|
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False),
|
|
nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats),
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.op(x)
|
|
|
|
|
|
class DualSepConv(nn.Module):
|
|
|
|
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True):
|
|
super(DualSepConv, self).__init__()
|
|
self.op_a = SepConv(C_in, C_in , kernel_size, stride, padding, dilation, affine, track_running_stats)
|
|
self.op_b = SepConv(C_in, C_out, kernel_size, 1, padding, dilation, affine, track_running_stats)
|
|
|
|
def forward(self, x):
|
|
x = self.op_a(x)
|
|
x = self.op_b(x)
|
|
return x
|
|
|
|
|
|
class ResNetBasicblock(nn.Module):
|
|
|
|
def __init__(self, inplanes, planes, stride, affine=True):
|
|
super(ResNetBasicblock, self).__init__()
|
|
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
|
self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, 1, 1, affine)
|
|
self.conv_b = ReLUConvBN( planes, planes, 3, 1, 1, 1, affine)
|
|
if stride == 2:
|
|
self.downsample = nn.Sequential(
|
|
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
|
|
nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False))
|
|
elif inplanes != planes:
|
|
self.downsample = ReLUConvBN(inplanes, planes, 1, 1, 0, 1, affine)
|
|
else:
|
|
self.downsample = None
|
|
self.in_dim = inplanes
|
|
self.out_dim = planes
|
|
self.stride = stride
|
|
self.num_conv = 2
|
|
|
|
def extra_repr(self):
|
|
string = '{name}(inC={in_dim}, outC={out_dim}, stride={stride})'.format(name=self.__class__.__name__, **self.__dict__)
|
|
return string
|
|
|
|
def forward(self, inputs):
|
|
|
|
basicblock = self.conv_a(inputs)
|
|
basicblock = self.conv_b(basicblock)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(inputs)
|
|
else:
|
|
residual = inputs
|
|
return residual + basicblock
|
|
|
|
|
|
class POOLING(nn.Module):
|
|
|
|
def __init__(self, C_in, C_out, stride, mode, affine=True, track_running_stats=True):
|
|
super(POOLING, self).__init__()
|
|
if C_in == C_out:
|
|
self.preprocess = None
|
|
else:
|
|
self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, 0, 1, affine, track_running_stats)
|
|
if mode == 'avg' : self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False)
|
|
elif mode == 'max': self.op = nn.MaxPool2d(3, stride=stride, padding=1)
|
|
else : raise ValueError('Invalid mode={:} in POOLING'.format(mode))
|
|
|
|
def forward(self, inputs):
|
|
if self.preprocess: x = self.preprocess(inputs)
|
|
else : x = inputs
|
|
return self.op(x)
|
|
|
|
|
|
class Identity(nn.Module):
|
|
|
|
def __init__(self):
|
|
super(Identity, self).__init__()
|
|
|
|
def forward(self, x):
|
|
return x
|
|
|
|
|
|
class Zero(nn.Module):
|
|
|
|
def __init__(self, C_in, C_out, stride):
|
|
super(Zero, self).__init__()
|
|
self.C_in = C_in
|
|
self.C_out = C_out
|
|
self.stride = stride
|
|
self.is_zero = True
|
|
|
|
def forward(self, x):
|
|
if self.C_in == self.C_out:
|
|
if self.stride == 1: return x.mul(0.)
|
|
else : return x[:,:,::self.stride,::self.stride].mul(0.)
|
|
else:
|
|
shape = list(x.shape)
|
|
shape[1] = self.C_out
|
|
zeros = x.new_zeros(shape, dtype=x.dtype, device=x.device)
|
|
return zeros
|
|
|
|
def extra_repr(self):
|
|
return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__)
|
|
|
|
|
|
class FactorizedReduce(nn.Module):
|
|
|
|
def __init__(self, C_in, C_out, stride, affine, track_running_stats):
|
|
super(FactorizedReduce, self).__init__()
|
|
self.stride = stride
|
|
self.C_in = C_in
|
|
self.C_out = C_out
|
|
self.relu = nn.ReLU(inplace=False)
|
|
if stride == 2:
|
|
#assert C_out % 2 == 0, 'C_out : {:}'.format(C_out)
|
|
C_outs = [C_out // 2, C_out - C_out // 2]
|
|
self.convs = nn.ModuleList()
|
|
for i in range(2):
|
|
self.convs.append( nn.Conv2d(C_in, C_outs[i], 1, stride=stride, padding=0, bias=False) )
|
|
self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0)
|
|
elif stride == 1:
|
|
self.conv = nn.Conv2d(C_in, C_out, 1, stride=stride, padding=0, bias=False)
|
|
else:
|
|
raise ValueError('Invalid stride : {:}'.format(stride))
|
|
self.bn = nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats)
|
|
|
|
def forward(self, x):
|
|
if self.stride == 2:
|
|
x = self.relu(x)
|
|
y = self.pad(x)
|
|
out = torch.cat([self.convs[0](x), self.convs[1](y[:,:,1:,1:])], dim=1)
|
|
else:
|
|
out = self.conv(x)
|
|
out = self.bn(out)
|
|
return out
|
|
|
|
def extra_repr(self):
|
|
return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__)
|
|
|
|
|
|
# Auto-ReID: Searching for a Part-Aware ConvNet for Person Re-Identification, ICCV 2019
|
|
class PartAwareOp(nn.Module):
|
|
|
|
def __init__(self, C_in, C_out, stride, part=4):
|
|
super().__init__()
|
|
self.part = 4
|
|
self.hidden = C_in // 3
|
|
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
|
self.local_conv_list = nn.ModuleList()
|
|
for i in range(self.part):
|
|
self.local_conv_list.append(
|
|
nn.Sequential(nn.ReLU(), nn.Conv2d(C_in, self.hidden, 1), nn.BatchNorm2d(self.hidden, affine=True))
|
|
)
|
|
self.W_K = nn.Linear(self.hidden, self.hidden)
|
|
self.W_Q = nn.Linear(self.hidden, self.hidden)
|
|
|
|
if stride == 2 : self.last = FactorizedReduce(C_in + self.hidden, C_out, 2)
|
|
elif stride == 1: self.last = FactorizedReduce(C_in + self.hidden, C_out, 1)
|
|
else: raise ValueError('Invalid Stride : {:}'.format(stride))
|
|
|
|
def forward(self, x):
|
|
batch, C, H, W = x.size()
|
|
assert H >= self.part, 'input size too small : {:} vs {:}'.format(x.shape, self.part)
|
|
IHs = [0]
|
|
for i in range(self.part): IHs.append( min(H, int((i+1)*(float(H)/self.part))) )
|
|
local_feat_list = []
|
|
for i in range(self.part):
|
|
feature = x[:, :, IHs[i]:IHs[i+1], :]
|
|
xfeax = self.avg_pool(feature)
|
|
xfea = self.local_conv_list[i]( xfeax )
|
|
local_feat_list.append( xfea )
|
|
part_feature = torch.cat(local_feat_list, dim=2).view(batch, -1, self.part)
|
|
part_feature = part_feature.transpose(1,2).contiguous()
|
|
part_K = self.W_K(part_feature)
|
|
part_Q = self.W_Q(part_feature).transpose(1,2).contiguous()
|
|
weight_att = torch.bmm(part_K, part_Q)
|
|
attention = torch.softmax(weight_att, dim=2)
|
|
aggreateF = torch.bmm(attention, part_feature).transpose(1,2).contiguous()
|
|
features = []
|
|
for i in range(self.part):
|
|
feature = aggreateF[:, :, i:i+1].expand(batch, self.hidden, IHs[i+1]-IHs[i])
|
|
feature = feature.view(batch, self.hidden, IHs[i+1]-IHs[i], 1)
|
|
features.append( feature )
|
|
features = torch.cat(features, dim=2).expand(batch, self.hidden, H, W)
|
|
final_fea = torch.cat((x,features), dim=1)
|
|
outputs = self.last( final_fea )
|
|
return outputs
|
|
|
|
|
|
# Searching for A Robust Neural Architecture in Four GPU Hours
|
|
class GDAS_Reduction_Cell(nn.Module):
|
|
|
|
def __init__(self, C_prev_prev, C_prev, C, reduction_prev, multiplier, affine, track_running_stats):
|
|
super(GDAS_Reduction_Cell, self).__init__()
|
|
if reduction_prev:
|
|
self.preprocess0 = FactorizedReduce(C_prev_prev, C, 2, affine, track_running_stats)
|
|
else:
|
|
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, 1, affine, track_running_stats)
|
|
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, 1, affine, track_running_stats)
|
|
self.multiplier = multiplier
|
|
|
|
self.reduction = True
|
|
self.ops1 = nn.ModuleList(
|
|
[nn.Sequential(
|
|
nn.ReLU(inplace=False),
|
|
nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=False),
|
|
nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=False),
|
|
nn.BatchNorm2d(C, affine=True),
|
|
nn.ReLU(inplace=False),
|
|
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=False),
|
|
nn.BatchNorm2d(C, affine=True)),
|
|
nn.Sequential(
|
|
nn.ReLU(inplace=False),
|
|
nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=False),
|
|
nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=False),
|
|
nn.BatchNorm2d(C, affine=True),
|
|
nn.ReLU(inplace=False),
|
|
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=False),
|
|
nn.BatchNorm2d(C, affine=True))])
|
|
|
|
self.ops2 = nn.ModuleList(
|
|
[nn.Sequential(
|
|
nn.MaxPool2d(3, stride=1, padding=1),
|
|
nn.BatchNorm2d(C, affine=True)),
|
|
nn.Sequential(
|
|
nn.MaxPool2d(3, stride=2, padding=1),
|
|
nn.BatchNorm2d(C, affine=True))])
|
|
|
|
def forward(self, s0, s1, drop_prob = -1):
|
|
s0 = self.preprocess0(s0)
|
|
s1 = self.preprocess1(s1)
|
|
|
|
X0 = self.ops1[0] (s0)
|
|
X1 = self.ops1[1] (s1)
|
|
if self.training and drop_prob > 0.:
|
|
X0, X1 = drop_path(X0, drop_prob), drop_path(X1, drop_prob)
|
|
|
|
#X2 = self.ops2[0] (X0+X1)
|
|
X2 = self.ops2[0] (s0)
|
|
X3 = self.ops2[1] (s1)
|
|
if self.training and drop_prob > 0.:
|
|
X2, X3 = drop_path(X2, drop_prob), drop_path(X3, drop_prob)
|
|
return torch.cat([X0, X1, X2, X3], dim=1)
|