198 lines
7.4 KiB
Python
198 lines
7.4 KiB
Python
##################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
##################################################
|
|
import math, random, torch
|
|
import warnings
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from copy import deepcopy
|
|
from ..cell_operations import OPS
|
|
|
|
|
|
# This module is used for NAS-Bench-201, represents a small search space with a complete DAG
|
|
class NAS201SearchCell(nn.Module):
|
|
|
|
def __init__(self, C_in, C_out, stride, max_nodes, op_names, affine=False, track_running_stats=True):
|
|
super(NAS201SearchCell, self).__init__()
|
|
|
|
self.op_names = deepcopy(op_names)
|
|
self.edges = nn.ModuleDict()
|
|
self.max_nodes = max_nodes
|
|
self.in_dim = C_in
|
|
self.out_dim = C_out
|
|
for i in range(1, max_nodes):
|
|
for j in range(i):
|
|
node_str = '{:}<-{:}'.format(i, j)
|
|
if j == 0:
|
|
xlists = [OPS[op_name](C_in , C_out, stride, affine, track_running_stats) for op_name in op_names]
|
|
else:
|
|
xlists = [OPS[op_name](C_in , C_out, 1, affine, track_running_stats) for op_name in op_names]
|
|
self.edges[ node_str ] = nn.ModuleList( xlists )
|
|
self.edge_keys = sorted(list(self.edges.keys()))
|
|
self.edge2index = {key:i for i, key in enumerate(self.edge_keys)}
|
|
self.num_edges = len(self.edges)
|
|
|
|
def extra_repr(self):
|
|
string = 'info :: {max_nodes} nodes, inC={in_dim}, outC={out_dim}'.format(**self.__dict__)
|
|
return string
|
|
|
|
def forward(self, inputs, weightss):
|
|
nodes = [inputs]
|
|
for i in range(1, self.max_nodes):
|
|
inter_nodes = []
|
|
for j in range(i):
|
|
node_str = '{:}<-{:}'.format(i, j)
|
|
weights = weightss[ self.edge2index[node_str] ]
|
|
inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) )
|
|
nodes.append( sum(inter_nodes) )
|
|
return nodes[-1]
|
|
|
|
# GDAS
|
|
def forward_gdas(self, inputs, hardwts, index):
|
|
nodes = [inputs]
|
|
for i in range(1, self.max_nodes):
|
|
inter_nodes = []
|
|
for j in range(i):
|
|
node_str = '{:}<-{:}'.format(i, j)
|
|
weights = hardwts[ self.edge2index[node_str] ]
|
|
argmaxs = index[ self.edge2index[node_str] ].item()
|
|
weigsum = sum( weights[_ie] * edge(nodes[j]) if _ie == argmaxs else weights[_ie] for _ie, edge in enumerate(self.edges[node_str]) )
|
|
inter_nodes.append( weigsum )
|
|
nodes.append( sum(inter_nodes) )
|
|
return nodes[-1]
|
|
|
|
# joint
|
|
def forward_joint(self, inputs, weightss):
|
|
nodes = [inputs]
|
|
for i in range(1, self.max_nodes):
|
|
inter_nodes = []
|
|
for j in range(i):
|
|
node_str = '{:}<-{:}'.format(i, j)
|
|
weights = weightss[ self.edge2index[node_str] ]
|
|
#aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) / weights.numel()
|
|
aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) )
|
|
inter_nodes.append( aggregation )
|
|
nodes.append( sum(inter_nodes) )
|
|
return nodes[-1]
|
|
|
|
# uniform random sampling per iteration, SETN
|
|
def forward_urs(self, inputs):
|
|
nodes = [inputs]
|
|
for i in range(1, self.max_nodes):
|
|
while True: # to avoid select zero for all ops
|
|
sops, has_non_zero = [], False
|
|
for j in range(i):
|
|
node_str = '{:}<-{:}'.format(i, j)
|
|
candidates = self.edges[node_str]
|
|
select_op = random.choice(candidates)
|
|
sops.append( select_op )
|
|
if not hasattr(select_op, 'is_zero') or select_op.is_zero is False: has_non_zero=True
|
|
if has_non_zero: break
|
|
inter_nodes = []
|
|
for j, select_op in enumerate(sops):
|
|
inter_nodes.append( select_op(nodes[j]) )
|
|
nodes.append( sum(inter_nodes) )
|
|
return nodes[-1]
|
|
|
|
# select the argmax
|
|
def forward_select(self, inputs, weightss):
|
|
nodes = [inputs]
|
|
for i in range(1, self.max_nodes):
|
|
inter_nodes = []
|
|
for j in range(i):
|
|
node_str = '{:}<-{:}'.format(i, j)
|
|
weights = weightss[ self.edge2index[node_str] ]
|
|
inter_nodes.append( self.edges[node_str][ weights.argmax().item() ]( nodes[j] ) )
|
|
#inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) )
|
|
nodes.append( sum(inter_nodes) )
|
|
return nodes[-1]
|
|
|
|
# forward with a specific structure
|
|
def forward_dynamic(self, inputs, structure):
|
|
nodes = [inputs]
|
|
for i in range(1, self.max_nodes):
|
|
cur_op_node = structure.nodes[i-1]
|
|
inter_nodes = []
|
|
for op_name, j in cur_op_node:
|
|
node_str = '{:}<-{:}'.format(i, j)
|
|
op_index = self.op_names.index( op_name )
|
|
inter_nodes.append( self.edges[node_str][op_index]( nodes[j] ) )
|
|
nodes.append( sum(inter_nodes) )
|
|
return nodes[-1]
|
|
|
|
|
|
|
|
class MixedOp(nn.Module):
|
|
|
|
def __init__(self, space, C, stride, affine, track_running_stats):
|
|
super(MixedOp, self).__init__()
|
|
self._ops = nn.ModuleList()
|
|
for primitive in space:
|
|
op = OPS[primitive](C, C, stride, affine, track_running_stats)
|
|
self._ops.append(op)
|
|
|
|
def forward_gdas(self, x, weights, index):
|
|
return self._ops[index](x) * weights[index]
|
|
|
|
def forward_darts(self, x, weights):
|
|
return sum(w * op(x) for w, op in zip(weights, self._ops))
|
|
|
|
|
|
# Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018
|
|
class NASNetSearchCell(nn.Module):
|
|
|
|
def __init__(self, space, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev, affine, track_running_stats):
|
|
super(NASNetSearchCell, self).__init__()
|
|
self.reduction = reduction
|
|
self.op_names = deepcopy(space)
|
|
if reduction_prev: self.preprocess0 = OPS['skip_connect'](C_prev_prev, C, 2, affine, track_running_stats)
|
|
else : self.preprocess0 = OPS['nor_conv_1x1'](C_prev_prev, C, 1, affine, track_running_stats)
|
|
self.preprocess1 = OPS['nor_conv_1x1'](C_prev, C, 1, affine, track_running_stats)
|
|
self._steps = steps
|
|
self._multiplier = multiplier
|
|
|
|
self._ops = nn.ModuleList()
|
|
self.edges = nn.ModuleDict()
|
|
for i in range(self._steps):
|
|
for j in range(2+i):
|
|
node_str = '{:}<-{:}'.format(i, j) # indicate the edge from node-(j) to node-(i+2)
|
|
stride = 2 if reduction and j < 2 else 1
|
|
op = MixedOp(space, C, stride, affine, track_running_stats)
|
|
self.edges[ node_str ] = op
|
|
self.edge_keys = sorted(list(self.edges.keys()))
|
|
self.edge2index = {key:i for i, key in enumerate(self.edge_keys)}
|
|
self.num_edges = len(self.edges)
|
|
|
|
def forward_gdas(self, s0, s1, weightss, indexs):
|
|
s0 = self.preprocess0(s0)
|
|
s1 = self.preprocess1(s1)
|
|
|
|
states = [s0, s1]
|
|
for i in range(self._steps):
|
|
clist = []
|
|
for j, h in enumerate(states):
|
|
node_str = '{:}<-{:}'.format(i, j)
|
|
op = self.edges[ node_str ]
|
|
weights = weightss[ self.edge2index[node_str] ]
|
|
index = indexs[ self.edge2index[node_str] ].item()
|
|
clist.append( op.forward_gdas(h, weights, index) )
|
|
states.append( sum(clist) )
|
|
|
|
return torch.cat(states[-self._multiplier:], dim=1)
|
|
|
|
def forward_darts(self, s0, s1, weightss):
|
|
s0 = self.preprocess0(s0)
|
|
s1 = self.preprocess1(s1)
|
|
|
|
states = [s0, s1]
|
|
for i in range(self._steps):
|
|
clist = []
|
|
for j, h in enumerate(states):
|
|
node_str = '{:}<-{:}'.format(i, j)
|
|
op = self.edges[ node_str ]
|
|
weights = weightss[ self.edge2index[node_str] ]
|
|
clist.append( op.forward_darts(h, weights) )
|
|
states.append( sum(clist) )
|
|
|
|
return torch.cat(states[-self._multiplier:], dim=1)
|