95 lines
3.1 KiB
Python
95 lines
3.1 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from .initialization import initialize_resnet
|
|
|
|
|
|
class WideBasicblock(nn.Module):
|
|
def __init__(self, inplanes, planes, stride, dropout=False):
|
|
super(WideBasicblock, self).__init__()
|
|
|
|
self.bn_a = nn.BatchNorm2d(inplanes)
|
|
self.conv_a = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
|
|
|
self.bn_b = nn.BatchNorm2d(planes)
|
|
if dropout:
|
|
self.dropout = nn.Dropout2d(p=0.5, inplace=True)
|
|
else:
|
|
self.dropout = None
|
|
self.conv_b = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
|
|
|
|
if inplanes != planes:
|
|
self.downsample = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, padding=0, bias=False)
|
|
else:
|
|
self.downsample = None
|
|
|
|
def forward(self, x):
|
|
|
|
basicblock = self.bn_a(x)
|
|
basicblock = F.relu(basicblock)
|
|
basicblock = self.conv_a(basicblock)
|
|
|
|
basicblock = self.bn_b(basicblock)
|
|
basicblock = F.relu(basicblock)
|
|
if self.dropout is not None:
|
|
basicblock = self.dropout(basicblock)
|
|
basicblock = self.conv_b(basicblock)
|
|
|
|
if self.downsample is not None:
|
|
x = self.downsample(x)
|
|
|
|
return x + basicblock
|
|
|
|
|
|
class CifarWideResNet(nn.Module):
|
|
"""
|
|
ResNet optimized for the Cifar dataset, as specified in
|
|
https://arxiv.org/abs/1512.03385.pdf
|
|
"""
|
|
def __init__(self, depth, widen_factor, num_classes, dropout):
|
|
super(CifarWideResNet, self).__init__()
|
|
|
|
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
|
assert (depth - 4) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
|
|
layer_blocks = (depth - 4) // 6
|
|
print ('CifarPreResNet : Depth : {} , Layers for each block : {}'.format(depth, layer_blocks))
|
|
|
|
self.num_classes = num_classes
|
|
self.dropout = dropout
|
|
self.conv_3x3 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
|
|
|
|
self.message = 'Wide ResNet : depth={:}, widen_factor={:}, class={:}'.format(depth, widen_factor, num_classes)
|
|
self.inplanes = 16
|
|
self.stage_1 = self._make_layer(WideBasicblock, 16*widen_factor, layer_blocks, 1)
|
|
self.stage_2 = self._make_layer(WideBasicblock, 32*widen_factor, layer_blocks, 2)
|
|
self.stage_3 = self._make_layer(WideBasicblock, 64*widen_factor, layer_blocks, 2)
|
|
self.lastact = nn.Sequential(nn.BatchNorm2d(64*widen_factor), nn.ReLU(inplace=True))
|
|
self.avgpool = nn.AvgPool2d(8)
|
|
self.classifier = nn.Linear(64*widen_factor, num_classes)
|
|
|
|
self.apply(initialize_resnet)
|
|
|
|
def get_message(self):
|
|
return self.message
|
|
|
|
def _make_layer(self, block, planes, blocks, stride):
|
|
|
|
layers = []
|
|
layers.append(block(self.inplanes, planes, stride, self.dropout))
|
|
self.inplanes = planes
|
|
for i in range(1, blocks):
|
|
layers.append(block(self.inplanes, planes, 1, self.dropout))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
x = self.conv_3x3(x)
|
|
x = self.stage_1(x)
|
|
x = self.stage_2(x)
|
|
x = self.stage_3(x)
|
|
x = self.lastact(x)
|
|
x = self.avgpool(x)
|
|
features = x.view(x.size(0), -1)
|
|
outs = self.classifier(features)
|
|
return features, outs
|