naswot/models/cell_infers/cells.py
2020-06-03 12:59:01 +01:00

121 lines
4.2 KiB
Python

#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
import torch
import torch.nn as nn
from copy import deepcopy
from ..cell_operations import OPS
# Cell for NAS-Bench-201
class InferCell(nn.Module):
def __init__(self, genotype, C_in, C_out, stride):
super(InferCell, self).__init__()
self.layers = nn.ModuleList()
self.node_IN = []
self.node_IX = []
self.genotype = deepcopy(genotype)
for i in range(1, len(genotype)):
node_info = genotype[i-1]
cur_index = []
cur_innod = []
for (op_name, op_in) in node_info:
if op_in == 0:
layer = OPS[op_name](C_in , C_out, stride, True, True)
else:
layer = OPS[op_name](C_out, C_out, 1, True, True)
cur_index.append( len(self.layers) )
cur_innod.append( op_in )
self.layers.append( layer )
self.node_IX.append( cur_index )
self.node_IN.append( cur_innod )
self.nodes = len(genotype)
self.in_dim = C_in
self.out_dim = C_out
def extra_repr(self):
string = 'info :: nodes={nodes}, inC={in_dim}, outC={out_dim}'.format(**self.__dict__)
laystr = []
for i, (node_layers, node_innods) in enumerate(zip(self.node_IX,self.node_IN)):
y = ['I{:}-L{:}'.format(_ii, _il) for _il, _ii in zip(node_layers, node_innods)]
x = '{:}<-({:})'.format(i+1, ','.join(y))
laystr.append( x )
return string + ', [{:}]'.format( ' | '.join(laystr) ) + ', {:}'.format(self.genotype.tostr())
def forward(self, inputs):
nodes = [inputs]
for i, (node_layers, node_innods) in enumerate(zip(self.node_IX,self.node_IN)):
node_feature = sum( self.layers[_il](nodes[_ii]) for _il, _ii in zip(node_layers, node_innods) )
nodes.append( node_feature )
return nodes[-1]
# Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018
class NASNetInferCell(nn.Module):
def __init__(self, genotype, C_prev_prev, C_prev, C, reduction, reduction_prev, affine, track_running_stats):
super(NASNetInferCell, self).__init__()
self.reduction = reduction
if reduction_prev: self.preprocess0 = OPS['skip_connect'](C_prev_prev, C, 2, affine, track_running_stats)
else : self.preprocess0 = OPS['nor_conv_1x1'](C_prev_prev, C, 1, affine, track_running_stats)
self.preprocess1 = OPS['nor_conv_1x1'](C_prev, C, 1, affine, track_running_stats)
if not reduction:
nodes, concats = genotype['normal'], genotype['normal_concat']
else:
nodes, concats = genotype['reduce'], genotype['reduce_concat']
self._multiplier = len(concats)
self._concats = concats
self._steps = len(nodes)
self._nodes = nodes
self.edges = nn.ModuleDict()
for i, node in enumerate(nodes):
for in_node in node:
name, j = in_node[0], in_node[1]
stride = 2 if reduction and j < 2 else 1
node_str = '{:}<-{:}'.format(i+2, j)
self.edges[node_str] = OPS[name](C, C, stride, affine, track_running_stats)
# [TODO] to support drop_prob in this function..
def forward(self, s0, s1, unused_drop_prob):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
states = [s0, s1]
for i, node in enumerate(self._nodes):
clist = []
for in_node in node:
name, j = in_node[0], in_node[1]
node_str = '{:}<-{:}'.format(i+2, j)
op = self.edges[ node_str ]
clist.append( op(states[j]) )
states.append( sum(clist) )
return torch.cat([states[x] for x in self._concats], dim=1)
class AuxiliaryHeadCIFAR(nn.Module):
def __init__(self, C, num_classes):
"""assuming input size 8x8"""
super(AuxiliaryHeadCIFAR, self).__init__()
self.features = nn.Sequential(
nn.ReLU(inplace=True),
nn.AvgPool2d(5, stride=3, padding=0, count_include_pad=False), # image size = 2 x 2
nn.Conv2d(C, 128, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 768, 2, bias=False),
nn.BatchNorm2d(768),
nn.ReLU(inplace=True)
)
self.classifier = nn.Linear(768, num_classes)
def forward(self, x):
x = self.features(x)
x = self.classifier(x.view(x.size(0),-1))
return x