121 lines
4.2 KiB
Python
121 lines
4.2 KiB
Python
#####################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
|
#####################################################
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from copy import deepcopy
|
|
from ..cell_operations import OPS
|
|
|
|
|
|
# Cell for NAS-Bench-201
|
|
class InferCell(nn.Module):
|
|
|
|
def __init__(self, genotype, C_in, C_out, stride):
|
|
super(InferCell, self).__init__()
|
|
|
|
self.layers = nn.ModuleList()
|
|
self.node_IN = []
|
|
self.node_IX = []
|
|
self.genotype = deepcopy(genotype)
|
|
for i in range(1, len(genotype)):
|
|
node_info = genotype[i-1]
|
|
cur_index = []
|
|
cur_innod = []
|
|
for (op_name, op_in) in node_info:
|
|
if op_in == 0:
|
|
layer = OPS[op_name](C_in , C_out, stride, True, True)
|
|
else:
|
|
layer = OPS[op_name](C_out, C_out, 1, True, True)
|
|
cur_index.append( len(self.layers) )
|
|
cur_innod.append( op_in )
|
|
self.layers.append( layer )
|
|
self.node_IX.append( cur_index )
|
|
self.node_IN.append( cur_innod )
|
|
self.nodes = len(genotype)
|
|
self.in_dim = C_in
|
|
self.out_dim = C_out
|
|
|
|
def extra_repr(self):
|
|
string = 'info :: nodes={nodes}, inC={in_dim}, outC={out_dim}'.format(**self.__dict__)
|
|
laystr = []
|
|
for i, (node_layers, node_innods) in enumerate(zip(self.node_IX,self.node_IN)):
|
|
y = ['I{:}-L{:}'.format(_ii, _il) for _il, _ii in zip(node_layers, node_innods)]
|
|
x = '{:}<-({:})'.format(i+1, ','.join(y))
|
|
laystr.append( x )
|
|
return string + ', [{:}]'.format( ' | '.join(laystr) ) + ', {:}'.format(self.genotype.tostr())
|
|
|
|
def forward(self, inputs):
|
|
nodes = [inputs]
|
|
for i, (node_layers, node_innods) in enumerate(zip(self.node_IX,self.node_IN)):
|
|
node_feature = sum( self.layers[_il](nodes[_ii]) for _il, _ii in zip(node_layers, node_innods) )
|
|
nodes.append( node_feature )
|
|
return nodes[-1]
|
|
|
|
|
|
|
|
# Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018
|
|
class NASNetInferCell(nn.Module):
|
|
|
|
def __init__(self, genotype, C_prev_prev, C_prev, C, reduction, reduction_prev, affine, track_running_stats):
|
|
super(NASNetInferCell, self).__init__()
|
|
self.reduction = reduction
|
|
if reduction_prev: self.preprocess0 = OPS['skip_connect'](C_prev_prev, C, 2, affine, track_running_stats)
|
|
else : self.preprocess0 = OPS['nor_conv_1x1'](C_prev_prev, C, 1, affine, track_running_stats)
|
|
self.preprocess1 = OPS['nor_conv_1x1'](C_prev, C, 1, affine, track_running_stats)
|
|
|
|
if not reduction:
|
|
nodes, concats = genotype['normal'], genotype['normal_concat']
|
|
else:
|
|
nodes, concats = genotype['reduce'], genotype['reduce_concat']
|
|
self._multiplier = len(concats)
|
|
self._concats = concats
|
|
self._steps = len(nodes)
|
|
self._nodes = nodes
|
|
self.edges = nn.ModuleDict()
|
|
for i, node in enumerate(nodes):
|
|
for in_node in node:
|
|
name, j = in_node[0], in_node[1]
|
|
stride = 2 if reduction and j < 2 else 1
|
|
node_str = '{:}<-{:}'.format(i+2, j)
|
|
self.edges[node_str] = OPS[name](C, C, stride, affine, track_running_stats)
|
|
|
|
# [TODO] to support drop_prob in this function..
|
|
def forward(self, s0, s1, unused_drop_prob):
|
|
s0 = self.preprocess0(s0)
|
|
s1 = self.preprocess1(s1)
|
|
|
|
states = [s0, s1]
|
|
for i, node in enumerate(self._nodes):
|
|
clist = []
|
|
for in_node in node:
|
|
name, j = in_node[0], in_node[1]
|
|
node_str = '{:}<-{:}'.format(i+2, j)
|
|
op = self.edges[ node_str ]
|
|
clist.append( op(states[j]) )
|
|
states.append( sum(clist) )
|
|
return torch.cat([states[x] for x in self._concats], dim=1)
|
|
|
|
|
|
class AuxiliaryHeadCIFAR(nn.Module):
|
|
|
|
def __init__(self, C, num_classes):
|
|
"""assuming input size 8x8"""
|
|
super(AuxiliaryHeadCIFAR, self).__init__()
|
|
self.features = nn.Sequential(
|
|
nn.ReLU(inplace=True),
|
|
nn.AvgPool2d(5, stride=3, padding=0, count_include_pad=False), # image size = 2 x 2
|
|
nn.Conv2d(C, 128, 1, bias=False),
|
|
nn.BatchNorm2d(128),
|
|
nn.ReLU(inplace=True),
|
|
nn.Conv2d(128, 768, 2, bias=False),
|
|
nn.BatchNorm2d(768),
|
|
nn.ReLU(inplace=True)
|
|
)
|
|
self.classifier = nn.Linear(768, num_classes)
|
|
|
|
def forward(self, x):
|
|
x = self.features(x)
|
|
x = self.classifier(x.view(x.size(0),-1))
|
|
return x
|