v0.0.5 code

This commit is contained in:
Hanzhang Ma 2024-05-10 23:57:58 +02:00
parent ebebd2d481
commit 060fa5bff1
6 changed files with 70547 additions and 35277 deletions

View File

@ -35,6 +35,8 @@ class EnergySystem:
# 如果ESS也不足以满足需求再从电网获取 - 当ESS中的存储电量也不足以补充时再从电网购买剩余所需电量。
def simulate(self, data, time_interval):
total_benefit = 0
total_netto_benefit = 0
total_gen = 0
for index, row in data.iterrows():
time = row['time']
sunlight_intensity = row['sunlight']
@ -109,9 +111,11 @@ class EnergySystem:
# 工厂需求量-总能量
# unmet_demand = max(0, factory_demand * time_interval - total_energy)
# benefit = (total_energy - unmet_demand) * electricity_price
total_gen += saved_energy
benefit = (saved_energy) * electricity_price
cost = net_grid * electricity_price
# print(f"time:{time} benefit: {benefit}, cost: {cost}")
total_netto_benefit += benefit
total_benefit += benefit - cost
# # spring
week_start = self.season_start
@ -137,4 +141,4 @@ class EnergySystem:
# self.winter_week_gen.append(generated_pv_power)
# self.winter_week_soc.append(self.ess.storage / self.ess.capacity)
return total_benefit
return (total_benefit, total_netto_benefit, total_gen)

View File

@ -17,12 +17,12 @@
"pv_capacities":{
"begin": 0,
"end": 50000,
"groups": 5
"groups": 11
},
"ess_capacities":{
"begin": 0,
"end": 100000,
"groups": 10
"groups": 11
},
"time_interval":{
"numerator": 15,
@ -31,7 +31,8 @@
"annotated": {
"unmet_prob": false,
"benefit": false,
"cost": false
"cost": false,
"roi": false
},
"figure_size":{
"height": 9,
@ -40,6 +41,7 @@
"plot_title":{
"unmet_prob": "Coverage Rate of Factory Electrical Demands",
"cost": "Costs of Microgrid system [m-EUR]",
"benefit": "Financial Profit Based on Py & Ess Configuration (k-EUR / year)"
"benefit": "Financial Profit Based on Py & Ess Configuration (k-EUR / year)",
"roi": "ROI"
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -52,7 +52,7 @@
"source": [
"import json\n",
"\n",
"print(\"Version 0.0.4\")\n",
"print(\"Version 0.0.5\")\n",
"\n",
"with open('config.json', 'r') as f:\n",
" js_data = json.load(f)\n",
@ -61,6 +61,7 @@
" \n",
"\n",
"time_interval = js_data[\"time_interval\"][\"numerator\"] / js_data[\"time_interval\"][\"denominator\"]\n",
"print(time_interval)\n",
"\n",
"pv_loss = js_data[\"pv\"][\"loss\"]\n",
"pv_cost_per_kW = js_data[\"pv\"][\"cost_per_kW\"]\n",
@ -85,10 +86,13 @@
"annot_unmet = js_data[\"annotated\"][\"unmet_prob\"]\n",
"annot_benefit = js_data[\"annotated\"][\"benefit\"]\n",
"annot_cost = js_data[\"annotated\"][\"cost\"]\n",
"annot_roi = js_data[\"annotated\"][\"roi\"]\n",
"\n",
"title_unmet = js_data[\"plot_title\"][\"unmet_prob\"]\n",
"title_cost = js_data[\"plot_title\"][\"cost\"]\n",
"title_benefit = js_data[\"plot_title\"][\"benefit\"]\n",
"title_roi = js_data[\"plot_title\"][\"roi\"]\n",
"\n",
"\n",
"figure_size = (js_data[\"figure_size\"][\"length\"], js_data[\"figure_size\"][\"height\"])\n",
"\n",
@ -181,6 +185,59 @@
" plt.savefig(filename)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def draw_roi(costs, results, filename, title_roi, days=365, annot_roi=False, figure_size=(10, 10)):\n",
" costs = costs.astype(float)\n",
" costs = costs / 365 \n",
" costs = costs * days\n",
"\n",
" df = results\n",
" df = costs / df\n",
" if 0 in df.index and 0 in df.columns:\n",
" df.loc[0,0] = 100\n",
" df[df > 80] = 100\n",
" print(df)\n",
"\n",
" df = df.astype(float)\n",
" df.index = df.index / 1000\n",
" df.index = df.index.map(int)\n",
" df.columns = df.columns / 1000\n",
" df.columns = df.columns.map(int)\n",
" min_value = df.min().min()\n",
" max_value = df.max().max()\n",
" print(max_value)\n",
" max_scale = max(abs(min_value), abs(max_value))\n",
"\n",
" df[df.columns[-1] + 1] = df.iloc[:, -1] \n",
" new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)\n",
" for i in df.columns:\n",
" new_Data[i] = df[i].iloc[-1]\n",
" df = pd.concat([df, new_Data])\n",
"\n",
" X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))\n",
"\n",
" def fmt(x,pos):\n",
" return '{:.0f}'.format(x)\n",
"\n",
" cmap = sns.color_palette(\"Greys\", as_cmap=True)\n",
" plt.figure(figsize=figure_size)\n",
" ax = sns.heatmap(df, fmt=\".1f\", cmap=cmap, vmin=0, vmax=100, annot=annot_benefit)\n",
" CS = ax.contour(X, Y, df, colors='black', alpha=0.5)\n",
" ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))\n",
" plt.title(title_roi)\n",
" plt.gca().invert_yaxis()\n",
" plt.xlim(0, df.shape[1] - 1)\n",
" plt.ylim(0, df.shape[0] - 1)\n",
" plt.xlabel('ESS Capacity (MWh)')\n",
" plt.ylabel('PV Capacity (MW)')\n",
" plt.savefig(filename)"
]
},
{
"cell_type": "code",
"execution_count": null,
@ -253,8 +310,8 @@
" ax = sns.heatmap(df, fmt=\".00%\", cmap=cmap, vmin=0, vmax=1, annot=annot_unmet)\n",
"\n",
" cbar = ax.collections[0].colorbar\n",
" cbar.set_ticks([0, 0.25, 0.5, 0.75, 1])\n",
" cbar.set_ticklabels(['0%', '25%', '50%', '75%', '100%'])\n",
" cbar.set_ticks([0, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1])\n",
" cbar.set_ticklabels(['0%', '10%', '20%', '30%', '40%', '50%', '60%', '70%', '80%', '90%', '100%'])\n",
" cbar.ax.yaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos: f'{x:.0%}'))\n",
" X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))\n",
"\n",
@ -289,7 +346,7 @@
"metadata": {},
"outputs": [],
"source": [
"def generate_data(pv_capacity, pv_cost_per_kW, pv_lifetime, pv_loss, ess_capacity, ess_cost_per_kW, ess_lifetime, ess_loss, grid_capacity, grid_loss, sell_price,time_interval, data, days):\n",
"def generate_data(pv_capacity, pv_cost_per_kW, pv_lifetime, pv_loss, ess_capacity, ess_cost_per_kW, ess_lifetime, ess_loss, grid_capacity, grid_loss, sell_price, time_interval, data, days):\n",
" pv = pv_config(capacity=pv_capacity, \n",
" cost_per_kW=pv_cost_per_kW,\n",
" lifetime=pv_lifetime, \n",
@ -306,11 +363,11 @@
" energySystem = EnergySystem(pv_type=pv, \n",
" ess_type=ess, \n",
" grid_type= grid)\n",
" benefit = energySystem.simulate(data, time_interval)\n",
" (benefit, netto_benefit, gen_energy) = energySystem.simulate(data, time_interval)\n",
" results = cal_profit(energySystem, benefit, days)\n",
" overload_cnt = energySystem.overload_cnt\n",
" costs = energySystem.ess.capacity * energySystem.ess.cost_per_kW + energySystem.pv.capacity * energySystem.pv.cost_per_kW\n",
" return (results, overload_cnt, costs)\n"
" return (results, overload_cnt, costs, netto_benefit, gen_energy, energySystem.generated)\n"
]
},
{
@ -322,26 +379,38 @@
"months_results = []\n",
"months_costs = []\n",
"months_overload = []\n",
"months_nettos = []\n",
"months_gen_energy = []\n",
"months_gen_energy2 = []\n",
"for index, month_data in enumerate(months_data):\n",
" results = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
" costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
" overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
" nettos = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
" gen_energies = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
" gen_energies2 = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
" for pv_capacity in pv_capacities:\n",
" for ess_capacity in ess_capacities:\n",
" (result, overload, cost) = generate_data(pv_capacity=pv_capacity,pv_cost_per_kW=pv_cost_per_kW, pv_lifetime=pv_lifetime, pv_loss=pv_loss, ess_capacity=ess_capacity, ess_cost_per_kW=ess_cost_per_kW, ess_lifetime=ess_lifetime, ess_loss=ess_loss, grid_capacity=grid_capacity, grid_loss=grid_loss, sell_price=sell_price, time_interval=time_interval, data=month_data, days=months_days[index])\n",
" (result, overload, cost, netto, gen_energy, gen_energy2) = generate_data(pv_capacity=pv_capacity,pv_cost_per_kW=pv_cost_per_kW, pv_lifetime=pv_lifetime, pv_loss=pv_loss, ess_capacity=ess_capacity, ess_cost_per_kW=ess_cost_per_kW, ess_lifetime=ess_lifetime, ess_loss=ess_loss, grid_capacity=grid_capacity, grid_loss=grid_loss, sell_price=sell_price, time_interval=time_interval, data=month_data, days=months_days[index])\n",
" results.loc[pv_capacity,ess_capacity] = result\n",
" overload_cnt.loc[pv_capacity,ess_capacity] = overload\n",
" costs.loc[pv_capacity,ess_capacity] = cost\n",
" nettos.loc[pv_capacity,ess_capacity] = netto\n",
" gen_energies.loc[pv_capacity, ess_capacity] = gen_energy\n",
" gen_energies2.loc[pv_capacity, ess_capacity] = gen_energy2\n",
" months_results.append(results)\n",
" months_costs.append(costs)\n",
" months_overload.append(overload_cnt)\n",
" months_nettos.append(nettos)\n",
" months_gen_energy.append(gen_energies)\n",
" months_gen_energy2.append(gen_energies2)\n",
" draw_results(results=results, \n",
" filename=f'plots/pv-{pv_capacity}-ess-{ess_capacity}-{index}-benefit.png',\n",
" filename=f'plots/pv-{pv_capacity}-ess-{ess_capacity}-month-{index+1}-benefit.png',\n",
" title_benefit=title_benefit,\n",
" annot_benefit=annot_benefit,\n",
" figure_size=figure_size)\n",
" draw_overload(overload_cnt=overload_cnt, \n",
" filename=f'plots/pv-{pv_capacity}-ess-{ess_capacity}-{index}-unmet.png',\n",
" filename=f'plots/pv-{pv_capacity}-ess-{ess_capacity}-month-{index+1}-unmet.png',\n",
" title_unmet=title_unmet,\n",
" annot_unmet=annot_unmet,\n",
" figure_size=figure_size,\n",
@ -351,6 +420,11 @@
"annual_result = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
"annual_costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
"annual_overload = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
"annual_nettos = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
"annual_gen = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
"annual_gen2 = pd.DataFrame(index=pv_capacities, columns= ess_capacities)\n",
"\n",
"\n",
"\n",
"# get the yearly results\n",
"for pv_capacity in pv_capacities:\n",
@ -358,13 +432,22 @@
" results = 0\n",
" costs = 0\n",
" overload_cnt = 0\n",
" nettos = 0\n",
" gen = 0\n",
" gen2 = 0\n",
" for index, month_data in enumerate(months_data):\n",
" results += months_results[index].loc[pv_capacity,ess_capacity]\n",
" costs += months_costs[index].loc[pv_capacity,ess_capacity]\n",
" overload_cnt += months_overload[index].loc[pv_capacity, ess_capacity]\n",
" nettos += months_nettos[index].loc[pv_capacity, ess_capacity]\n",
" gen += months_gen_energy[index].loc[pv_capacity, ess_capacity]\n",
" gen2 += months_gen_energy[index].loc[pv_capacity, ess_capacity]\n",
" annual_result.loc[pv_capacity, ess_capacity] = results\n",
" annual_costs.loc[pv_capacity, ess_capacity] = costs\n",
" annual_overload.loc[pv_capacity, ess_capacity] = overload_cnt\n",
" annual_nettos.loc[pv_capacity, ess_capacity] = nettos\n",
" annual_gen.loc[pv_capacity, ess_capacity] = gen\n",
" annual_gen2.loc[pv_capacity, ess_capacity] = gen2\n",
"\n",
"draw_cost(costs=annual_costs,\n",
" filename='plots/annual_cost.png',\n",
@ -403,9 +486,27 @@
"if not os.path.isdir('data'):\n",
" os.makedirs('data')\n",
"\n",
"save_data(results, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-results')\n",
"save_data(costs, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-costs')\n",
"save_data(overload_cnt, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-overload_cnt')"
"save_data(annual_result, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-results')\n",
"save_data(annual_costs, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-costs')\n",
"save_data(annual_overload, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-overload_cnt')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"draw_results(annual_result, 'plots/test.png', 'test', False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"draw_roi(annual_costs, annual_nettos, 'plots/annual_roi.png', title_roi, 365, annot_benefit, figure_size)\n"
]
}
],

560
main.py
View File

@ -1,12 +1,21 @@
#!/usr/bin/env python
# coding: utf-8
# In[14]:
# In[ ]:
import os
import glob
import shutil
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from matplotlib.ticker import FuncFormatter
import numpy as np
import pandas as pd
import os
import seaborn as sns
import json
from matplotlib.colors import LinearSegmentedColormap
def clear_folder_make_ess_pv(folder_path):
if os.path.isdir(folder_path):
@ -19,7 +28,7 @@ folder_path = 'plots'
clear_folder_make_ess_pv(folder_path)
# In[15]:
# In[ ]:
import matplotlib.pyplot as plt
@ -30,18 +39,21 @@ from EnergySystem import EnergySystem
from config import pv_config, grid_config, ess_config
# In[16]:
# In[ ]:
import json
print("Version 0.0.2")
print("Version 0.0.5")
with open('config.json', 'r') as f:
js_data = json.load(f)
data = pd.read_csv('combined_data.csv')
time_interval = js_data["time_interval"]["numerator"] / js_data["time_interval"]["denominator"]
print(time_interval)
pv_loss = js_data["pv"]["loss"]
pv_cost_per_kW = js_data["pv"]["cost_per_kW"]
@ -66,22 +78,45 @@ ess_groups = js_data["ess_capacities"]["groups"]
annot_unmet = js_data["annotated"]["unmet_prob"]
annot_benefit = js_data["annotated"]["benefit"]
annot_cost = js_data["annotated"]["cost"]
annot_roi = js_data["annotated"]["roi"]
title_unmet = js_data["plot_title"]["unmet_prob"]
title_cost = js_data["plot_title"]["cost"]
title_benefit = js_data["plot_title"]["benefit"]
title_roi = js_data["plot_title"]["roi"]
figure_size = (js_data["figure_size"]["length"], js_data["figure_size"]["height"])
data = pd.read_csv('combined_data.csv')
granularity = js_data["time_interval"]["numerator"]
months_days = [31,28,31,30,31,30,31,31,30,31,30,31]
def get_month_coe(num, granularity):
return 60 / granularity * 24 * months_days[num]
months_index = [get_month_coe(num, granularity) for num in range(12)]
months_data = []
for i in range(1,12):
months_index[i] += months_index[i-1]
for i in range(12):
start = 0 if i == 0 else months_index[i-1]
end = months_index[i]
months_data.append(data.iloc[int(start):int(end)])
pv_capacities = np.linspace(pv_begin, pv_end, pv_groups)
ess_capacities = np.linspace(ess_begin, ess_end, ess_groups)
results = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
affords = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
# results = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
# affords = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
# costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
# overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
# In[17]:
# In[ ]:
hour_demand = []
@ -97,164 +132,309 @@ plt.savefig('plots/demand.png')
plt.close()
# In[18]:
# In[ ]:
def cal_profit(es: EnergySystem, saved_money):
profit = saved_money - es.ess.get_cost_per_year() - es.pv.get_cost_per_year()
def draw_results(results, filename, title_benefit, annot_benefit=False, figure_size=(10, 10)):
df=results
df = df.astype(float)
df.index = df.index / 1000
df.index = df.index.map(int)
df.columns = df.columns / 1000
df.columns = df.columns.map(int)
min_value = df.min().min()
max_value = df.max().max()
max_scale = max(abs(min_value/1000), abs(max_value/1000))
df[df.columns[-1] + 1] = df.iloc[:, -1]
new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)
for i in df.columns:
new_Data[i] = df[i].iloc[-1]
df = pd.concat([df, new_Data])
X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))
def fmt(x,pos):
return '{:.0f}'.format(x/1000)
cmap = sns.color_palette("coolwarm", as_cmap=True)
plt.figure(figsize=figure_size)
ax = sns.heatmap(df/1000, fmt=".1f", cmap=cmap, vmin=-max_scale, vmax=max_scale, annot=annot_benefit)
CS = ax.contour(X, Y, df, colors='black', alpha=0.5)
ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))
plt.title(title_benefit)
plt.gca().invert_yaxis()
plt.xlim(0, df.shape[1] - 1)
plt.ylim(0, df.shape[0] - 1)
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
plt.savefig(filename)
# In[ ]:
def draw_roi(costs, results, filename, title_roi, days=365, annot_roi=False, figure_size=(10, 10)):
costs = costs.astype(float)
costs = costs / 365
costs = costs * days
df = results
df = costs / df
if 0 in df.index and 0 in df.columns:
df.loc[0,0] = 100
df[df > 80] = 100
print(df)
df = df.astype(float)
df.index = df.index / 1000
df.index = df.index.map(int)
df.columns = df.columns / 1000
df.columns = df.columns.map(int)
min_value = df.min().min()
max_value = df.max().max()
print(max_value)
max_scale = max(abs(min_value), abs(max_value))
df[df.columns[-1] + 1] = df.iloc[:, -1]
new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)
for i in df.columns:
new_Data[i] = df[i].iloc[-1]
df = pd.concat([df, new_Data])
X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))
def fmt(x,pos):
return '{:.0f}'.format(x)
cmap = sns.color_palette("Greys", as_cmap=True)
plt.figure(figsize=figure_size)
ax = sns.heatmap(df, fmt=".1f", cmap=cmap, vmin=0, vmax=100, annot=annot_benefit)
CS = ax.contour(X, Y, df, colors='black', alpha=0.5)
ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))
plt.title(title_roi)
plt.gca().invert_yaxis()
plt.xlim(0, df.shape[1] - 1)
plt.ylim(0, df.shape[0] - 1)
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
plt.savefig(filename)
# In[ ]:
def draw_cost(costs, filename, title_cost, annot_cost=False, figure_size=(10, 10)):
df = costs
df = df.astype(int)
df.index = df.index / 1000
df.index = df.index.map(int)
df.columns = df.columns / 1000
df.columns = df.columns.map(int)
df[df.columns[-1] + 1] = df.iloc[:, -1]
new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)
for i in df.columns:
new_Data[i] = df[i].iloc[-1]
df = pd.concat([df, new_Data])
X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))
def fmt(x, pos):
return '{:.0f}'.format(x / 1000000)
plt.figure(figsize=figure_size)
ax = sns.heatmap(df/1000000, fmt=".1f", cmap='viridis', annot=annot_cost)
CS = ax.contour(X, Y, df, colors='black', alpha=0.5)
ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))
plt.title(title_cost)
plt.gca().invert_yaxis()
plt.xlim(0, df.shape[1] - 1)
plt.ylim(0, df.shape[0] - 1)
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
plt.savefig(filename)
# In[ ]:
def draw_overload(overload_cnt, filename, title_unmet, annot_unmet=False, figure_size=(10, 10), days=365, granularity=15):
df = overload_cnt
print(days, granularity)
coef = 60 / granularity * days * 24
print(coef)
print(df)
df = ( coef - df) / coef
print(df)
df = df.astype(float)
df.index = df.index / 1000
df.index = df.index.map(int)
df.columns = df.columns / 1000
df.columns = df.columns.map(int)
df[df.columns[-1] + 1] = df.iloc[:, -1]
new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)
for i in df.columns:
new_Data[i] = df[i].iloc[-1]
# print(new_Data)
df = pd.concat([df, new_Data])
plt.figure(figsize=figure_size)
cmap = LinearSegmentedColormap.from_list("", ["white", "blue"])
ax = sns.heatmap(df, fmt=".00%", cmap=cmap, vmin=0, vmax=1, annot=annot_unmet)
cbar = ax.collections[0].colorbar
cbar.set_ticks([0, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1])
cbar.set_ticklabels(['0%', '10%', '20%', '30%', '40%', '50%', '60%', '70%', '80%', '90%', '100%'])
cbar.ax.yaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos: f'{x:.0%}'))
X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))
def fmt(x, pos):
return '{:.0f}%'.format(x * 100)
CS = ax.contour(X, Y, df, colors='black', alpha=0.5)
ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))
plt.xlim(0, df.shape[1] - 1)
plt.ylim(0, df.shape[0] - 1)
plt.title(title_unmet)
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
plt.savefig(filename)
# In[ ]:
def cal_profit(es: EnergySystem, saved_money, days):
profit = saved_money - es.ess.get_cost_per_year() / 365 * days - es.pv.get_cost_per_year() / 365 * days
return profit
# In[24]:
# In[ ]:
for ess_capacity in ess_capacities:
print(f"ess_capacity:{ess_capacity}")
def generate_data(pv_capacity, pv_cost_per_kW, pv_lifetime, pv_loss, ess_capacity, ess_cost_per_kW, ess_lifetime, ess_loss, grid_capacity, grid_loss, sell_price, time_interval, data, days):
pv = pv_config(capacity=pv_capacity,
cost_per_kW=pv_cost_per_kW,
lifetime=pv_lifetime,
loss=pv_loss)
ess = ess_config(capacity=ess_capacity,
cost_per_kW=ess_cost_per_kW,
lifetime=ess_lifetime,
loss=ess_loss,
charge_power=ess_capacity,
discharge_power=ess_capacity)
grid = grid_config(capacity=grid_capacity,
grid_loss=grid_loss,
sell_price= sell_price)
energySystem = EnergySystem(pv_type=pv,
ess_type=ess,
grid_type= grid)
(benefit, netto_benefit, gen_energy) = energySystem.simulate(data, time_interval)
results = cal_profit(energySystem, benefit, days)
overload_cnt = energySystem.overload_cnt
costs = energySystem.ess.capacity * energySystem.ess.cost_per_kW + energySystem.pv.capacity * energySystem.pv.cost_per_kW
return (results, overload_cnt, costs, netto_benefit, gen_energy, energySystem.generated)
# In[ ]:
months_results = []
months_costs = []
months_overload = []
months_nettos = []
months_gen_energy = []
months_gen_energy2 = []
for index, month_data in enumerate(months_data):
results = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
nettos = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
gen_energies = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
gen_energies2 = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
for pv_capacity in pv_capacities:
print(f"pv_capacity:{pv_capacity}")
pv = pv_config(capacity=pv_capacity,
cost_per_kW=pv_cost_per_kW,
lifetime=pv_lifetime,
loss=pv_loss)
ess = ess_config(capacity=ess_capacity,
cost_per_kW=ess_cost_per_kW,
lifetime=ess_lifetime,
loss=ess_loss,
charge_power=ess_capacity,
discharge_power=ess_capacity)
grid = grid_config(capacity=grid_capacity,
grid_loss=grid_loss,
sell_price= sell_price)
energySystem = EnergySystem(pv_type=pv,
ess_type=ess,
grid_type= grid)
benefit = energySystem.simulate(data, time_interval)
results.loc[pv_capacity,ess_capacity] = cal_profit(energySystem, benefit)
affords.loc[pv_capacity,ess_capacity] = energySystem.afford
overload_cnt.loc[pv_capacity,ess_capacity] = energySystem.overload_cnt
costs.loc[pv_capacity,ess_capacity] = energySystem.ess.capacity * energySystem.ess.cost_per_kW + energySystem.pv.capacity * energySystem.pv.cost_per_kW
pv_generated = energySystem.day_generated
ess_generated = energySystem.hour_stored
ess_generated_2 = energySystem.hour_stored_2
plt.figure(figsize=(10,8));
plt.plot(ess_generated)
plt.xlabel('day #')
plt.ylabel('SoC %')
plt.title(f'14:00 ESS SoC \n PV cap:{pv_capacity}, ESS cap:{ess_capacity}')
plt.savefig(f'plots/ess/1400-{pv_capacity}-{ess_capacity}.png')
plt.close()
plt.figure(figsize=(10,8));
plt.plot(ess_generated_2)
plt.xlabel('day #')
plt.ylabel('SoC%')
plt.title(f'08:00 ESS SoC \n PV cap:{pv_capacity}, ESS cap:{ess_capacity}')
plt.savefig(f'plots/ess/0800-{pv_capacity}-{ess_capacity}.png')
plt.close()
# print(energySystem.unmet)
# spring_week_start = energySystem.season_start
# spring_week_end = spring_week_start + energySystem.week_length
# summer_week_start = energySystem.season_start + 1 * energySystem.season_step
# summer_week_end = summer_week_start + energySystem.week_length
# autumn_week_start = energySystem.season_start + 2 * energySystem.season_step
# autumn_week_end = autumn_week_start + energySystem.week_length
# winter_week_start = energySystem.season_start + 3 * energySystem.season_step
# winter_week_end = winter_week_start+ energySystem.week_length
for ess_capacity in ess_capacities:
(result, overload, cost, netto, gen_energy, gen_energy2) = generate_data(pv_capacity=pv_capacity,pv_cost_per_kW=pv_cost_per_kW, pv_lifetime=pv_lifetime, pv_loss=pv_loss, ess_capacity=ess_capacity, ess_cost_per_kW=ess_cost_per_kW, ess_lifetime=ess_lifetime, ess_loss=ess_loss, grid_capacity=grid_capacity, grid_loss=grid_loss, sell_price=sell_price, time_interval=time_interval, data=month_data, days=months_days[index])
results.loc[pv_capacity,ess_capacity] = result
overload_cnt.loc[pv_capacity,ess_capacity] = overload
costs.loc[pv_capacity,ess_capacity] = cost
nettos.loc[pv_capacity,ess_capacity] = netto
gen_energies.loc[pv_capacity, ess_capacity] = gen_energy
gen_energies2.loc[pv_capacity, ess_capacity] = gen_energy2
months_results.append(results)
months_costs.append(costs)
months_overload.append(overload_cnt)
months_nettos.append(nettos)
months_gen_energy.append(gen_energies)
months_gen_energy2.append(gen_energies2)
draw_results(results=results,
filename=f'plots/pv-{pv_capacity}-ess-{ess_capacity}-month-{index+1}-benefit.png',
title_benefit=title_benefit,
annot_benefit=annot_benefit,
figure_size=figure_size)
draw_overload(overload_cnt=overload_cnt,
filename=f'plots/pv-{pv_capacity}-ess-{ess_capacity}-month-{index+1}-unmet.png',
title_unmet=title_unmet,
annot_unmet=annot_unmet,
figure_size=figure_size,
days=months_days[index],
granularity=granularity)
# spring_consume_data = []
# summer_consume_data = []
# autumn_consume_data = []
# winter_consume_data = []
# for index, row in data.iterrows():
# if index in range(spring_week_start, spring_week_end):
# spring_consume_data.append(row['demand'])
# elif index in range(summer_week_start, summer_week_end):
# summer_consume_data.append(row['demand'])
# elif index in range(autumn_week_start, autumn_week_end):
# autumn_consume_data.append(row['demand'])
# elif index in range(winter_week_start, winter_week_end):
# winter_consume_data.append(row['demand'])
# spring_week_time = list(range(spring_week_start, spring_week_end))
# summer_week_time = list(range(summer_week_start, summer_week_end))
# autumn_week_time = list(range(autumn_week_start, autumn_week_end))
# winter_week_time = list(range(winter_week_start, winter_week_end))
# spring_pv_generated = energySystem.spring_week_gen
# summer_pv_generated = energySystem.summer_week_gen
# autumn_pv_generated = energySystem.autumn_week_gen
# winter_pv_generated = energySystem.winter_week_gen
# spring_soc = energySystem.spring_week_soc
# summer_soc = energySystem.summer_week_soc
# autumn_soc = energySystem.autumn_week_soc
# winter_soc = energySystem.winter_week_soc
annual_result = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
annual_costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
annual_overload = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
annual_nettos = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
annual_gen = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
annual_gen2 = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
# fig, ax1 = plt.subplots()
# plt.plot(spring_week_time, spring_pv_generated, label = 'pv generation')
# plt.plot(spring_week_time, spring_consume_data, label = 'factory consume')
# plt.ylabel('Power / kW')
# plt.xlabel('15 min #')
# plt.title(f'ess: {energySystem.ess.capacity/1000 } MWh pv: {energySystem.pv.capacity/1000 } MW spring week generate condition')
# plt.legend()
# plt.savefig(f'plots/{energySystem.ess.capacity}-{energySystem.pv.capacity}-spring.png')
# plt.close()
# get the yearly results
for pv_capacity in pv_capacities:
for ess_capacity in ess_capacities:
results = 0
costs = 0
overload_cnt = 0
nettos = 0
gen = 0
gen2 = 0
for index, month_data in enumerate(months_data):
results += months_results[index].loc[pv_capacity,ess_capacity]
costs += months_costs[index].loc[pv_capacity,ess_capacity]
overload_cnt += months_overload[index].loc[pv_capacity, ess_capacity]
nettos += months_nettos[index].loc[pv_capacity, ess_capacity]
gen += months_gen_energy[index].loc[pv_capacity, ess_capacity]
gen2 += months_gen_energy[index].loc[pv_capacity, ess_capacity]
annual_result.loc[pv_capacity, ess_capacity] = results
annual_costs.loc[pv_capacity, ess_capacity] = costs
annual_overload.loc[pv_capacity, ess_capacity] = overload_cnt
annual_nettos.loc[pv_capacity, ess_capacity] = nettos
annual_gen.loc[pv_capacity, ess_capacity] = gen
annual_gen2.loc[pv_capacity, ess_capacity] = gen2
# plt.plot(summer_week_time, summer_pv_generated, label = 'pv generation')
# plt.plot(summer_week_time, summer_consume_data, label = 'factory consume')
# plt.ylabel('Power / kW')
# plt.xlabel('15 min #')
# plt.title(f'ess: {energySystem.ess.capacity/1000 } MWh pv: {energySystem.pv.capacity/1000 } MW summer week generate condition')
# plt.legend()
# plt.savefig(f'plots/{energySystem.ess.capacity}-{energySystem.pv.capacity}-summer.png')
# plt.close()
# plt.plot(autumn_week_time, autumn_pv_generated, label = 'pv generation')
# plt.plot(autumn_week_time, autumn_consume_data, label = 'factory consume')
# plt.ylabel('Power / kW')
# plt.xlabel('15 min #')
# plt.title(f'ess: {energySystem.ess.capacity/1000 } MWh pv: {energySystem.pv.capacity/1000 } MW autumn week generate condition')
# plt.legend()
# plt.savefig(f'plots/{energySystem.ess.capacity}-{energySystem.pv.capacity}-autumn.png')
# plt.close()
# plt.plot(winter_week_time, winter_pv_generated, label = 'pv generation')
# plt.plot(winter_week_time, winter_consume_data, label = 'factory consume')
# plt.ylabel('Power / kW')
# plt.xlabel('15 min #')
# plt.title(f'ess: {energySystem.ess.capacity/1000 } MWh pv: {energySystem.pv.capacity/1000 } MW winter week generate condition')
# plt.legend()
# plt.savefig(f'plots/{energySystem.ess.capacity}-{energySystem.pv.capacity}-winter.png')
# plt.close()
# plt.figure();
# plt.plot(pv_generated)
# plt.xlabel('day #')
# plt.ylabel('Electricity kWh')
# plt.title(f'PV generated pv cap:{pv_capacity}, ess cap:{ess_capacity}')
# plt.savefig(f'plots/pv/{pv_capacity}-{ess_capacity}.png')
# plt.close()
draw_cost(costs=annual_costs,
filename='plots/annual_cost.png',
title_cost=title_cost,
annot_cost=annot_cost,
figure_size=figure_size)
draw_results(results=annual_result,
filename='plots/annual_benefit.png',
title_benefit=title_benefit,
annot_benefit=annot_benefit,
figure_size=figure_size)
draw_overload(overload_cnt=annual_overload,
filename='plots/annual_unmet.png',
title_unmet=title_unmet,
annot_unmet=annot_unmet,
figure_size=figure_size)
# plt.show()
# results = results.astype(float)
# pv = pv_config(capacity=100000,cost_per_kW=200,lifetime=25,loss=0.95)
# ess = ess_config(capacity=100000,cost_per_kW=300,lifetime=25,loss=0.95,charge_power=100000,discharge_power=100000)
# grid = grid_config(price_schedule=price_schedule, capacity=5000, grid_loss=0.95, sell_price=0.4)
# grid = grid_config(capacity=50000, grid_loss=0.95, sell_price=0.4)
# print(benefit)
# In[20]:
# In[ ]:
def save_data(data, filename):
@ -262,83 +442,25 @@ def save_data(data, filename):
data.to_json(filename + '.json')
# In[21]:
# In[ ]:
import matplotlib.ticker as ticker
if not os.path.isdir('data'):
os.makedirs('data')
save_data(results, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-results')
save_data(costs, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-costs')
save_data(overload_cnt, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-overload_cnt')
df=results
df = df.astype(float)
df.index = df.index / 1000
df.columns = df.columns / 1000
min_value = df.min().min()
max_value = df.max().max()
max_scale = max(abs(min_value/1000), abs(max_value/1000))
plt.figure(figsize=figure_size)
cmap = sns.color_palette("coolwarm", as_cmap=True)
ax = sns.heatmap(df/1000, fmt=".1f", cmap=cmap, vmin=-max_scale, vmax=max_scale, annot=annot_benefit)
# ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%.1f'))
plt.title(title_benefit)
plt.gca().invert_yaxis()
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
plt.savefig('plots/benefit.png')
save_data(annual_result, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-results')
save_data(annual_costs, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-costs')
save_data(annual_overload, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-overload_cnt')
# In[22]:
# In[ ]:
df = costs
df = df.astype(int)
df.index = df.index / 1000
df.columns = df.columns / 1000
plt.figure(figsize=figure_size)
sns.heatmap(df/1000000, fmt=".1f", cmap='viridis', annot=annot_cost)
plt.title(title_cost)
plt.gca().invert_yaxis()
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
plt.savefig('plots/costs.png')
# pv = pv_config(capacity=100000,cost_per_kW=200,lifetime=25,loss=0.95)
# ess = ess_config(capacity=100000,cost_per_kW=300,lifetime=25,loss=0.95,charge_power=100000,discharge_power=100000)
# grid = grid_config(price_schedule=price_schedule, capacity=5000, grid_loss=0.95, sell_price=0.4)
# grid = grid_config(capacity=50000, grid_loss=0.95, sell_price=0.4)
draw_results(annual_result, 'plots/test.png', 'test', False)
# print(benefit)
# In[ ]:
# In[23]:
from matplotlib.colors import LinearSegmentedColormap
df = overload_cnt
df = df.astype(int)
df.index = df.index / 1000
df.columns = df.columns / 1000
min_value = df.min().min()
max_value = df.max().max()
max_scale = max(abs(min_value/1000), abs(max_value/1000))
plt.figure(figsize=figure_size)
cmap = LinearSegmentedColormap.from_list("", ["white", "blue"])
ax = sns.heatmap(df/(4*24*365), fmt=".00%", cmap=cmap, vmin=0, vmax=1, annot=annot_unmet)
cbar = ax.collections[0].colorbar
cbar.set_ticks([0, 0.25, 0.5, 0.75, 1])
cbar.set_ticklabels(['0%', '25%', '50%', '75%', '100%'])
cbar.ax.yaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos: f'{x:.0%}'))
plt.title(title_unmet)
plt.gca().invert_yaxis()
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
plt.savefig('plots/unmet.png')
draw_roi(annual_costs, annual_nettos, 'plots/annual_roi.png', title_roi, 365, annot_benefit, figure_size)