update draw.py

This commit is contained in:
Hanzhang Ma 2024-05-10 01:10:55 +02:00
parent 58a7662a8b
commit d4fde202d0

115
draw.py
View File

@ -1,5 +1,6 @@
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from matplotlib.ticker import FuncFormatter
import numpy as np
import pandas as pd
import os
@ -7,7 +8,6 @@ import seaborn as sns
import json
from matplotlib.colors import LinearSegmentedColormap
def read_data(file_name: str):
with open(file_name, 'r') as f:
data = json.load(f)
@ -15,25 +15,43 @@ def read_data(file_name: str):
for subkey, subvalue in value.items():
data[key][subkey] = float(subvalue)
df = pd.DataFrame.from_dict(data, orient='index')
df = df.T
df.index = pd.to_numeric(df.index)
df.columns = pd.to_numeric(df.columns)
return df
def draw_results(results, filename, title, annot_benefit=False, figure_size=(10, 10)):
df= results
def draw_results(results, filename, title_benefit, annot_benefit=False, figure_size=(10, 10)):
df=results
df = df.astype(float)
df.index = df.index / 1000
df.index = df.index.map(int)
df.columns = df.columns / 1000
df.columns = df.columns.map(int)
min_value = df.min().min()
max_value = df.max().max()
max_scale = max(abs(min_value/1000), abs(max_value/1000))
plt.figure(figsize=figure_size)
df[df.columns[-1] + 1] = df.iloc[:, -1]
new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)
for i in df.columns:
new_Data[i] = df[i].iloc[-1]
# print(new_Data)
df = pd.concat([df, new_Data])
X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))
def fmt(x,pos):
return '{:.0f}'.format(x/1000)
cmap = sns.color_palette("coolwarm", as_cmap=True)
plt.figure(figsize=figure_size)
ax = sns.heatmap(df/1000, fmt=".1f", cmap=cmap, vmin=-max_scale, vmax=max_scale, annot=annot_benefit)
ax.xaxis.set_major_formatter(ticker.FuncFormatter(lambda x, _: f"{x:.2f}"))
# ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%.1f'))
plt.title(title)
CS = ax.contour(X, Y, df, colors='black', alpha=0.5)
ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))
plt.title(title_benefit)
plt.gca().invert_yaxis()
plt.xlim(0, df.shape[1] - 1)
plt.ylim(0, df.shape[0] - 1)
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
plt.savefig(filename)
@ -41,43 +59,84 @@ def draw_results(results, filename, title, annot_benefit=False, figure_size=(10,
def draw_cost(costs, filename, title_cost, annot_cost=False, figure_size=(10, 10)):
df = costs
df = df.astype(int)
print(df.index)
df.index = df.index / 1000
print(df.columns)
df.index = df.index.map(int)
df.columns = df.columns / 1000
df.columns = df.columns.map(int)
df[df.columns[-1] + 1] = df.iloc[:, -1]
new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)
for i in df.columns:
new_Data[i] = df[i].iloc[-1]
# print(new_Data)
df = pd.concat([df, new_Data])
X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))
def fmt(x, pos):
return '{:.0f}'.format(x / 1000000)
plt.figure(figsize=figure_size)
sns.heatmap(df/1000000, fmt=".1f", cmap='viridis', annot=annot_cost)
ax = sns.heatmap(df/1000000, fmt=".1f", cmap='viridis', annot=annot_cost)
CS = ax.contour(X, Y, df, colors='black', alpha=0.5)
ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))
plt.title(title_cost)
plt.gca().invert_yaxis()
plt.xlim(0, df.shape[1] - 1)
plt.ylim(0, df.shape[0] - 1)
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
print(filename)
plt.savefig(filename)
def draw_overload(overload_cnt, filename, title_unmet, annot_unmet=False, figure_size=(10, 10)):
df = overload_cnt
df = df.astype(int)
df = (4 * 24 * 365 - df) / (4 * 24 * 365)
df = df.astype(float)
df.index = df.index / 1000
df.index = df.index.map(int)
df.columns = df.columns / 1000
df.columns = df.columns.map(int)
print('unmet index')
print(df.index)
print('unmet columns')
print(df.columns)
min_value = df.min().min()
max_value = df.max().max()
max_scale = max(abs(min_value/1000), abs(max_value/1000))
# max_scale = max(abs(min_value/1000), abs(max_value/1000))
df[df.columns[-1] + 1] = df.iloc[:, -1]
new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)
for i in df.columns:
new_Data[i] = df[i].iloc[-1]
# print(new_Data)
df = pd.concat([df, new_Data])
plt.figure(figsize=figure_size)
cmap = LinearSegmentedColormap.from_list("", ["white", "blue"])
ax = sns.heatmap(df/(4*24*365), fmt=".00%", cmap=cmap, vmin=0, vmax=1, annot=annot_unmet)
ax = sns.heatmap(df, fmt=".00%", cmap=cmap, vmin=0, vmax=1, annot=annot_unmet)
cbar = ax.collections[0].colorbar
cbar.set_ticks([0, 0.25, 0.5, 0.75, 1])
cbar.set_ticklabels(['0%', '25%', '50%', '75%', '100%'])
cbar.ax.yaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos: f'{x:.0%}'))
X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))
def fmt(x, pos):
return '{:.0f}%'.format(x * 100)
CS = ax.contour(X, Y, df, colors='black', alpha=0.5)
ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))
plt.xlim(0, df.shape[1] - 1)
plt.ylim(0, df.shape[0] - 1)
plt.title(title_unmet)
plt.gca().invert_yaxis()
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
plt.savefig(filename)
directory = 'data/'
file_list = [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))]
@ -99,19 +158,19 @@ overload_dfs = [read_data(directory + '-'.join(f)) for f in overload_files]
results_dfs = [read_data(directory + '-'.join(f)) for f in results_files]
for costs_df, overload_df, results_df in zip(costs_dfs, overload_dfs, results_dfs):
# print(costs_df.index)
# print(pd.to_numeric(costs_df.columns))
# costs_df.index = pd.to_numeric(costs_df.columns )
# costs_df.columns = pd.to_numeric(costs_df.index)
print(costs_df)
draw_cost(costs_df, f'plots/costs-{int(costs_df.columns[-1])}.png', f'Costs for PV-{int(costs_df.columns[-1])}MW ESS-{int(costs_df.index[-1])}MWh', annot_cost=True)
# overload_df.index = pd.to_numeric(overload_df.columns, errors='coerce')
# overload_df.columns = pd.to_numeric(overload_df.columns, errors='coerce')
print(overload_df)
# draw_overload(overload_df, f'plots/overload-{overload_df.columns[-1]}', f'Overload for PV-{overload_df.columns[-1]}MW ESS-{overload_df.index[-1]}MWh', annot_unmet=True)
# results_df.index = pd.to_numeric(results_df.columns, errors='coerce')
# results_df.columns = pd.to_numeric(results_df.columns, errors='coerce')
# draw_results(results_df, f'plots/results-{results_df.columns[-1]}', f'Results for PV-{results_df.columns[-1]}MW ESS-{results_df.index[-1]}MWh', annot_benefit=True)
draw_cost(costs_df,
f'plots/costs-{int(costs_df.columns[-1])}-pv-{int(costs_df.index[-1])}.png',
f'Costs for ESS-{int(costs_df.columns[-1])}-pv-{int(costs_df.index[-1])}MWh', annot_cost=False)
draw_overload(overload_df,
f'plots/overload-ess-{overload_df.columns[-1]}-pv-{overload_df.index[-1]}.png',
f'Overload for ess-{overload_df.columns[-1]}MW pv-{overload_df.index[-1]}MWh',
annot_unmet=False)
draw_results(results_df,
f'plots/results-{results_df.columns[-1]}-pv-{results_df.index[-1]}.png',
f'Results for ess-{results_df.columns[-1]}MW pv-{results_df.index[-1]}MWh', annot_benefit=False)