Compare commits
3 Commits
0f49dba47e
...
8d040e64a0
Author | SHA1 | Date | |
---|---|---|---|
|
8d040e64a0 | ||
|
202d313684 | ||
|
da69e7e24a |
@ -11,6 +11,7 @@ class EnergySystem:
|
||||
self.hour_stored = []
|
||||
self.hour_stored_2 = []
|
||||
self.afford = True
|
||||
self.cost = self.ess.get_cost() + self.pv.get_cost()
|
||||
self.overload_cnt = 0
|
||||
self.spring_week_gen = []
|
||||
self.summer_week_gen = []
|
||||
@ -22,9 +23,12 @@ class EnergySystem:
|
||||
self.winter_week_soc = []
|
||||
self.granularity = 4
|
||||
self.season_step = self.granularity * 24 * 7 * 12
|
||||
self.season_start= self.granularity * 24 * 7 * 6
|
||||
self.season_start= self.granularity * 24 * 7 * 2
|
||||
self.week_length = self.granularity * 24 * 7
|
||||
self.unmet = []
|
||||
|
||||
def get_cost(self):
|
||||
return self.ess.get_cost()+self.pv.get_cost()
|
||||
|
||||
# 优先使用PV供电给工厂 - 如果PV输出能满足工厂的需求,则直接供电,多余的电能用来给ESS充电。
|
||||
# PV不足时使用ESS补充 - 如果PV输出不足以满足工厂需求,首先从ESS获取所需电量。
|
||||
@ -89,9 +93,11 @@ class EnergySystem:
|
||||
self.afford = False
|
||||
self.overload_cnt+=1
|
||||
log = f"index: {index}, time: {time}, SoC:{self.ess.storage / self.ess.capacity}%, storage: {self.ess.storage}, pv_gen:{generated_pv_power}, power_demand: {factory_demand}, overload_cnt:{self.overload_cnt}, day:{int(index/96) + 1}"
|
||||
self.unmet.append((index,time,factory_demand,generated_pv_power))
|
||||
# with open(f'plots/summary/ess-{self.ess.capacity}-pv-{self.pv.capacity}', 'a') as f:
|
||||
# f.write(log)
|
||||
# print(log)
|
||||
print(log)
|
||||
# self.unmet.append(log)
|
||||
saved_energy = generated_pv_energy + self.ess.storage * self.ess.loss
|
||||
self.ess.storage = 0
|
||||
needed_from_grid = factory_demand * time_interval - saved_energy
|
||||
@ -106,30 +112,28 @@ class EnergySystem:
|
||||
cost = net_grid * electricity_price
|
||||
# print(f"time:{time} benefit: {benefit}, cost: {cost}")
|
||||
total_benefit += benefit - cost
|
||||
# spring
|
||||
# # spring
|
||||
week_start = self.season_start
|
||||
week_end = self.week_length + week_start
|
||||
# print(index)
|
||||
# print(week_start, week_end)
|
||||
if index in range(week_start, week_end):
|
||||
self.spring_week_gen.append(generated_pv_power)
|
||||
self.spring_week_soc.append(self.ess.storage / self.ess.capacity)
|
||||
# summer
|
||||
week_start += self.season_step
|
||||
week_end += self.season_step
|
||||
if index in range(week_start, week_end):
|
||||
self.summer_week_gen.append(generated_pv_power)
|
||||
self.summer_week_soc.append(self.ess.storage / self.ess.capacity)
|
||||
# autumn
|
||||
week_start += self.season_step
|
||||
week_end += self.season_step
|
||||
if index in range(week_start, week_end):
|
||||
self.autumn_week_gen.append(generated_pv_power)
|
||||
self.autumn_week_soc.append(self.ess.storage / self.ess.capacity)
|
||||
week_start += self.season_step
|
||||
week_end += self.season_step
|
||||
if index in range(week_start, week_end):
|
||||
self.winter_week_gen.append(generated_pv_power)
|
||||
self.winter_week_soc.append(self.ess.storage / self.ess.capacity)
|
||||
# week_start += self.season_step
|
||||
# week_end += self.season_step
|
||||
# if index in range(week_start, week_end):
|
||||
# self.summer_week_gen.append(generated_pv_power)
|
||||
# self.summer_week_soc.append(self.ess.storage / self.ess.capacity)
|
||||
# # autumn
|
||||
# week_start += self.season_step
|
||||
# week_end += self.season_step
|
||||
# if index in range(week_start, week_end):
|
||||
# self.autumn_week_gen.append(generated_pv_power)
|
||||
# self.autumn_week_soc.append(self.ess.storage / self.ess.capacity)
|
||||
# week_start += self.season_step
|
||||
# week_end += self.season_step
|
||||
# if index in range(week_start, week_end):
|
||||
# self.winter_week_gen.append(generated_pv_power)
|
||||
# self.winter_week_soc.append(self.ess.storage / self.ess.capacity)
|
||||
|
||||
return total_benefit
|
14
README.md
14
README.md
@ -2,11 +2,13 @@
|
||||
|
||||
Feature list:
|
||||
|
||||
- []Draw the entire year's electricity consumption figure.
|
||||
- []Draw the entire year's energy generation figure.
|
||||
- []Draw a heatmap of the system profit in different configurations.
|
||||
- []Calculate the probability of a successful run.
|
||||
- []Read the configs from the file, including `time granularity`,
|
||||
- [] Draw the entire year's electricity consumption figure.
|
||||
- [] Draw the entire year's energy generation figure.
|
||||
- [] Draw a heatmap of the system profit in different configurations.
|
||||
~~- []Calculate the probability of a successful run.~~
|
||||
- [] Determine whether the system can run successfully
|
||||
- [] Calculate the ROI.
|
||||
- [] Read the configs from the file, including `time granularity`,
|
||||
- ess: `capacity`, `cost per kW`, `charge power`, `discharge power`, `loss`
|
||||
- pv: `capacity`, `cost per kW`, `loss`
|
||||
- grid: `capacity`, `sell price`
|
||||
@ -14,4 +16,4 @@ Feature list:
|
||||
- `lightintensity.xlsx`: record the light intensity. Value in the file should be between 0 and 1
|
||||
- `factory_power.xlsx`: record the power consumption in the factory. Default time granularity is `15min`
|
||||
- `combined_data.csv`: This file is generated by the Python script, including the `light` `intensity`, `factory_power`, `time`.
|
||||
- []GUI.
|
||||
- [] GUI.
|
31
config.json
Normal file
31
config.json
Normal file
@ -0,0 +1,31 @@
|
||||
{
|
||||
"pv":{
|
||||
"loss": 0.98,
|
||||
"cost_per_kW": 200,
|
||||
"lifetime": 15
|
||||
},
|
||||
"ess":{
|
||||
"loss": 0.98,
|
||||
"cost_per_kW": 300,
|
||||
"lifetime": 8
|
||||
},
|
||||
"grid":{
|
||||
"loss": 0.98,
|
||||
"sell_price": 0.2 ,
|
||||
"capacity": 5000
|
||||
},
|
||||
"pv_capacities":{
|
||||
"begin": 10000,
|
||||
"end": 50000,
|
||||
"groups": 3
|
||||
},
|
||||
"ess_capacities":{
|
||||
"begin": 10000,
|
||||
"end": 50000,
|
||||
"groups": 3
|
||||
},
|
||||
"time_interval":{
|
||||
"numerator": 15,
|
||||
"denominator": 60
|
||||
}
|
||||
}
|
@ -15,7 +15,7 @@ class ess_config:
|
||||
self.cost_per_kW = cost_per_kW
|
||||
self.lifetime = lifetime
|
||||
self.loss = loss
|
||||
self.storage = 0
|
||||
self.storage = 100
|
||||
self.charge_power = charge_power
|
||||
self.discharge_power = discharge_power
|
||||
def get_cost(self):
|
||||
|
11
convert.py
Normal file
11
convert.py
Normal file
@ -0,0 +1,11 @@
|
||||
import nbformat
|
||||
from nbconvert import PythonExporter
|
||||
|
||||
with open('main.ipynb', "r", encoding="utf-8") as f:
|
||||
notebook = nbformat.read(f, as_version = 4)
|
||||
|
||||
exporter = PythonExporter()
|
||||
python_code, _ = exporter.from_notebook_node(notebook)
|
||||
|
||||
with open('main.py', "w", encoding="utf-8") as f:
|
||||
f.write(python_code)
|
119157
main.ipynb
119157
main.ipynb
File diff suppressed because one or more lines are too long
539
main.py
539
main.py
@ -1,66 +1,470 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# In[40]:
|
||||
|
||||
import pandas as pd
|
||||
class pv_config:
|
||||
def __init__(self, capacity, cost_per_kW, lifetime, loss):
|
||||
self.capacity = capacity
|
||||
self.cost_per_kW = cost_per_kW
|
||||
self.lifetime = lifetime
|
||||
self.loss = loss
|
||||
def get_cost(self):
|
||||
return self.capacity * self.cost_per_kW
|
||||
def get_cost_per_year(self):
|
||||
return self.capacity * self.cost_per_kW / self.lifetime
|
||||
class ess_config:
|
||||
def __init__(self, capacity, cost_per_kW, lifetime, loss, charge_power, discharge_power):
|
||||
self.capacity = capacity
|
||||
self.cost_per_kW = cost_per_kW
|
||||
self.lifetime = lifetime
|
||||
self.loss = loss
|
||||
self.storage = 100
|
||||
self.charge_power = charge_power
|
||||
self.discharge_power = discharge_power
|
||||
def get_cost(self):
|
||||
return self.capacity * self.cost_per_kW
|
||||
def get_cost_per_year(self):
|
||||
return self.capacity * self.cost_per_kW / self.lifetime
|
||||
|
||||
class grid_config:
|
||||
def __init__(self, capacity, grid_loss, sell_price):
|
||||
# self.price_schedule = price_schedule
|
||||
self.loss = grid_loss
|
||||
self.sell_price = sell_price
|
||||
self.capacity = capacity
|
||||
|
||||
def get_price_for_time(self, time):
|
||||
hour, minute = map(int, time.split(':'))
|
||||
total_minutes = hour * 60 + minute
|
||||
for _, row in self.price_schedule.iterrows():
|
||||
start_hour, start_minute = map(int, row['time_start'].split(':'))
|
||||
end_hour, end_minute = map(int, row['time_end'].split(':'))
|
||||
start_total_minutes = start_hour * 60 + start_minute
|
||||
end_total_minutes = end_hour * 60 + end_minute
|
||||
if start_total_minutes <= total_minutes < end_total_minutes:
|
||||
return row['price']
|
||||
return 0.1 # 默认电价,以防万一没有匹配的时间段
|
||||
|
||||
|
||||
|
||||
# In[41]:
|
||||
class EnergySystem:
|
||||
def __init__(self, pv_type: pv_config, ess_type: ess_config, grid_type: grid_config):
|
||||
self.pv = pv_type
|
||||
self.ess = ess_type
|
||||
self.grid = grid_type
|
||||
self.day_generated = []
|
||||
self.generated = 0
|
||||
self.stored = 0
|
||||
self.hour_stored = []
|
||||
self.hour_stored_2 = []
|
||||
self.afford = True
|
||||
self.cost = self.ess.get_cost() + self.pv.get_cost()
|
||||
self.overload_cnt = 0
|
||||
self.spring_week_gen = []
|
||||
self.summer_week_gen = []
|
||||
self.autumn_week_gen = []
|
||||
self.winter_week_gen = []
|
||||
self.spring_week_soc = []
|
||||
self.summer_week_soc = []
|
||||
self.autumn_week_soc = []
|
||||
self.winter_week_soc = []
|
||||
self.granularity = 4
|
||||
self.season_step = self.granularity * 24 * 7 * 12
|
||||
self.season_start= self.granularity * 24 * 7 * 2
|
||||
self.week_length = self.granularity * 24 * 7
|
||||
self.unmet = []
|
||||
|
||||
def get_cost(self):
|
||||
return self.ess.get_cost()+self.pv.get_cost()
|
||||
|
||||
# 优先使用PV供电给工厂 - 如果PV输出能满足工厂的需求,则直接供电,多余的电能用来给ESS充电。
|
||||
# PV不足时使用ESS补充 - 如果PV输出不足以满足工厂需求,首先从ESS获取所需电量。
|
||||
# 如果ESS也不足以满足需求,再从电网获取 - 当ESS中的存储电量也不足以补充时,再从电网购买剩余所需电量。
|
||||
def simulate(self, data, time_interval):
|
||||
total_benefit = 0
|
||||
for index, row in data.iterrows():
|
||||
time = row['time']
|
||||
sunlight_intensity = row['sunlight']
|
||||
factory_demand = row['demand']
|
||||
electricity_price = row['price']
|
||||
# electricity_price = self.grid.get_price_for_time(time)
|
||||
|
||||
if time == '00:00':
|
||||
self.day_generated.append(self.generated)
|
||||
self.generated = 0
|
||||
if time.endswith('14:00'):
|
||||
soc = self.ess.storage / self.ess.capacity
|
||||
self.hour_stored.append(soc)
|
||||
if time.endswith('08:00'):
|
||||
soc = self.ess.storage / self.ess.capacity
|
||||
self.hour_stored_2.append(soc)
|
||||
|
||||
generated_pv_power = self.pv.capacity * sunlight_intensity # 生成的功率,单位 kW
|
||||
generated_pv_energy = generated_pv_power * time_interval * self.pv.loss # 生成的能量,单位 kWh
|
||||
self.generated += generated_pv_energy
|
||||
# pv生成的能量如果比工厂的需求要大
|
||||
if generated_pv_energy >= factory_demand * time_interval:
|
||||
# 剩余的能量(kwh) = pv生成的能量 - 工厂需求的功率 * 时间间隔
|
||||
surplus_energy = generated_pv_energy - factory_demand * time_interval
|
||||
# 要充到ess中的能量 = min(剩余的能量,ess的充电功率*时间间隔(ess在时间间隔内能充进的电量),ess的容量-ess储存的能量(ess中能冲进去的电量))
|
||||
charge_to_ess = min(surplus_energy, self.ess.charge_power * time_interval, self.ess.capacity - self.ess.storage)
|
||||
self.ess.storage += charge_to_ess
|
||||
surplus_after_ess = surplus_energy - charge_to_ess
|
||||
# 如果还有电量盈余,且pv功率大于ess的充电功率+工厂的需求功率则准备卖电
|
||||
if surplus_after_ess > 0 and generated_pv_power > self.ess.charge_power + factory_demand:
|
||||
sold_to_grid = surplus_after_ess
|
||||
sell_income = sold_to_grid * self.grid.sell_price
|
||||
total_benefit += sell_income
|
||||
# 节省的能量 = 工厂需求的能量 * 时间段
|
||||
# total_energy = factory_demand * time_interval
|
||||
saved_energy = factory_demand * time_interval
|
||||
# pv比工厂的需求小
|
||||
else:
|
||||
# 从ess中需要的电量 = 工厂需要的电量 - pv中的电量
|
||||
needed_from_ess = factory_demand * time_interval - generated_pv_energy
|
||||
# 如果ess中存的电量比需要的多
|
||||
if self.ess.storage * self.ess.loss >= needed_from_ess:
|
||||
# 取出电量
|
||||
if self.ess.discharge_power * time_interval * self.ess.loss < needed_from_ess:
|
||||
discharging_power = self.ess.discharge_power * time_interval
|
||||
else:
|
||||
discharging_power = needed_from_ess / self.ess.loss
|
||||
|
||||
self.ess.storage -= discharging_power
|
||||
# 节省下来的能量 = pv的能量 + 放出来的能量
|
||||
saved_energy = generated_pv_energy + discharging_power * self.ess.loss
|
||||
else:
|
||||
# 如果存的电量不够
|
||||
# 需要把ess中的所有电量释放出来
|
||||
if self.grid.capacity * time_interval + generated_pv_energy + self.ess.storage * self.ess.loss < factory_demand * time_interval:
|
||||
self.afford = False
|
||||
self.overload_cnt+=1
|
||||
log = f"index: {index}, time: {time}, SoC:{self.ess.storage / self.ess.capacity}%, storage: {self.ess.storage}, pv_gen:{generated_pv_power}, power_demand: {factory_demand}, overload_cnt:{self.overload_cnt}, day:{int(index/96) + 1}"
|
||||
self.unmet.append((index,time,factory_demand,generated_pv_power))
|
||||
# with open(f'plots/summary/ess-{self.ess.capacity}-pv-{self.pv.capacity}', 'a') as f:
|
||||
# f.write(log)
|
||||
print(log)
|
||||
# self.unmet.append(log)
|
||||
saved_energy = generated_pv_energy + self.ess.storage * self.ess.loss
|
||||
self.ess.storage = 0
|
||||
needed_from_grid = factory_demand * time_interval - saved_energy
|
||||
net_grid = min(self.grid.capacity * time_interval, needed_from_grid) * self.grid.loss
|
||||
# grid_energy += net_grid
|
||||
# total_energy += net_grid
|
||||
# print(total_energy)
|
||||
# 工厂需求量-总能量
|
||||
# unmet_demand = max(0, factory_demand * time_interval - total_energy)
|
||||
# benefit = (total_energy - unmet_demand) * electricity_price
|
||||
benefit = (saved_energy) * electricity_price
|
||||
cost = net_grid * electricity_price
|
||||
# print(f"time:{time} benefit: {benefit}, cost: {cost}")
|
||||
total_benefit += benefit - cost
|
||||
# # spring
|
||||
week_start = self.season_start
|
||||
week_end = self.week_length + week_start
|
||||
if index in range(week_start, week_end):
|
||||
self.spring_week_gen.append(generated_pv_power)
|
||||
self.spring_week_soc.append(self.ess.storage / self.ess.capacity)
|
||||
# summer
|
||||
# week_start += self.season_step
|
||||
# week_end += self.season_step
|
||||
# if index in range(week_start, week_end):
|
||||
# self.summer_week_gen.append(generated_pv_power)
|
||||
# self.summer_week_soc.append(self.ess.storage / self.ess.capacity)
|
||||
# # autumn
|
||||
# week_start += self.season_step
|
||||
# week_end += self.season_step
|
||||
# if index in range(week_start, week_end):
|
||||
# self.autumn_week_gen.append(generated_pv_power)
|
||||
# self.autumn_week_soc.append(self.ess.storage / self.ess.capacity)
|
||||
# week_start += self.season_step
|
||||
# week_end += self.season_step
|
||||
# if index in range(week_start, week_end):
|
||||
# self.winter_week_gen.append(generated_pv_power)
|
||||
# self.winter_week_soc.append(self.ess.storage / self.ess.capacity)
|
||||
|
||||
return total_benefit
|
||||
|
||||
import os
|
||||
import glob
|
||||
import shutil
|
||||
|
||||
def clear_folder_make_ess_pv(folder_path):
|
||||
shutil.rmtree(folder_path)
|
||||
os.makedirs(folder_path)
|
||||
os.makedirs(os.path.join(folder_path,'ess'))
|
||||
os.makedirs(os.path.join(folder_path,'pv'))
|
||||
|
||||
folder_path = 'plots'
|
||||
clear_folder_make_ess_pv(folder_path)
|
||||
|
||||
|
||||
# In[42]:
|
||||
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from EnergySystem import EnergySystem
|
||||
from config import pv_config, grid_config, ess_config
|
||||
figure_size = (10,8)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
data = pd.read_csv('combined_data.csv')
|
||||
time_interval = 15 / 60
|
||||
|
||||
pv_loss = 0.95
|
||||
pv_cost_per_kW = 200
|
||||
pv_base = 50000
|
||||
pv_lifetime = 25
|
||||
|
||||
ess_loss = 0.95
|
||||
ess_cost_per_kW = 300
|
||||
ess_base = 50000
|
||||
ess_lifetime = 25
|
||||
|
||||
grid_loss = 0.95
|
||||
sell_price = 0.4 #kWh
|
||||
grid_capacity = 5000 #kWh
|
||||
# In[43]:
|
||||
|
||||
|
||||
pv_step=10000
|
||||
ess_step=10000
|
||||
import json
|
||||
|
||||
pv_capacities = np.linspace(50000, 150000, 11)
|
||||
ess_capacities = np.linspace(50000, 150000, 11)
|
||||
results = pd.DataFrame(index=pv_capacities, columns = ess_capacities)
|
||||
for pv_capacity in pv_capacities:
|
||||
print(f"pv_capacity:{pv_capacity}")
|
||||
for ess_capacity in ess_capacities:
|
||||
print(f"ess_capacity:{ess_capacity}")
|
||||
pv = pv_config(capacity=pv_capacity,
|
||||
cost_per_kW=pv_cost_per_kW,
|
||||
lifetime=pv_lifetime,
|
||||
loss=pv_loss)
|
||||
ess = ess_config(capacity=ess_capacity,
|
||||
cost_per_kW=ess_cost_per_kW,
|
||||
lifetime=ess_lifetime,
|
||||
loss=ess_loss,
|
||||
charge_power=ess_capacity,
|
||||
discharge_power=ess_capacity)
|
||||
grid = grid_config(capacity=grid_capacity,
|
||||
grid_loss=grid_loss,
|
||||
sell_price= sell_price)
|
||||
energySystem = EnergySystem(pv_type=pv,
|
||||
ess_type=ess,
|
||||
grid_type= grid)
|
||||
benefit = energySystem.simulate(data, time_interval)
|
||||
results.loc[pv_capacity,ess_capacity] = benefit
|
||||
results = results.astype(float)
|
||||
with open('config.json', 'r') as f:
|
||||
js_data = json.load(f)
|
||||
|
||||
plt.figure(figsize=(10, 8)) # 设置图形大小
|
||||
sns.heatmap(results, annot=True, fmt=".1f", cmap='viridis')
|
||||
plt.title('Benefit Heatmap Based on PV and ESS Capacities')
|
||||
plt.xlabel('ESS Capacity (kWh)')
|
||||
plt.ylabel('PV Capacity (kW)')
|
||||
plt.show()
|
||||
data = pd.read_csv('combined_data.csv')
|
||||
time_interval = js_data["time_interval"]["numerator"] / js_data["time_interval"]["denominator"]
|
||||
|
||||
pv_loss = js_data["pv"]["loss"]
|
||||
pv_cost_per_kW = js_data["pv"]["cost_per_kW"]
|
||||
pv_lifetime = js_data["pv"]["lifetime"]
|
||||
|
||||
ess_loss = js_data["ess"]["loss"]
|
||||
ess_cost_per_kW = js_data["ess"]["cost_per_kW"]
|
||||
ess_lifetime = js_data["ess"]["lifetime"]
|
||||
|
||||
grid_loss = js_data["grid"]["loss"]
|
||||
sell_price = js_data["grid"]["sell_price"] #kWh
|
||||
grid_capacity = js_data["grid"]["capacity"] #kWh
|
||||
|
||||
pv_begin = js_data["pv_capacities"]["begin"]
|
||||
pv_end = js_data["pv_capacities"]["end"]
|
||||
pv_groups = js_data["pv_capacities"]["groups"]
|
||||
|
||||
ess_begin = js_data["ess_capacities"]["begin"]
|
||||
ess_end = js_data["ess_capacities"]["end"]
|
||||
ess_groups = js_data["ess_capacities"]["groups"]
|
||||
pv_capacities = np.linspace(pv_begin, pv_end, pv_groups)
|
||||
ess_capacities = np.linspace(ess_begin, ess_end, ess_groups)
|
||||
results = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
affords = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
|
||||
|
||||
# In[44]:
|
||||
|
||||
|
||||
hour_demand = []
|
||||
for index, row in data.iterrows():
|
||||
time = row['time']
|
||||
demand = row['demand']
|
||||
if time.endswith('00'):
|
||||
hour_demand.append(demand)
|
||||
plt.figure(figsize=(10,8))
|
||||
plt.plot(hour_demand)
|
||||
plt.ylabel('Demand Power / kW')
|
||||
plt.savefig('plots/demand.png')
|
||||
plt.close()
|
||||
|
||||
|
||||
# In[45]:
|
||||
|
||||
|
||||
def cal_profit(es: EnergySystem, saved_money):
|
||||
profit = saved_money - es.ess.get_cost_per_year() - es.pv.get_cost_per_year()
|
||||
return profit
|
||||
|
||||
|
||||
# In[46]:
|
||||
|
||||
|
||||
for pv_capacity in pv_capacities:
|
||||
print(f"pv_capacity:{pv_capacity}")
|
||||
for ess_capacity in ess_capacities:
|
||||
print(f"ess_capacity:{ess_capacity}")
|
||||
pv = pv_config(capacity=pv_capacity,
|
||||
cost_per_kW=pv_cost_per_kW,
|
||||
lifetime=pv_lifetime,
|
||||
loss=pv_loss)
|
||||
ess = ess_config(capacity=ess_capacity,
|
||||
cost_per_kW=ess_cost_per_kW,
|
||||
lifetime=ess_lifetime,
|
||||
loss=ess_loss,
|
||||
charge_power=ess_capacity,
|
||||
discharge_power=ess_capacity)
|
||||
grid = grid_config(capacity=grid_capacity,
|
||||
grid_loss=grid_loss,
|
||||
sell_price= sell_price)
|
||||
energySystem = EnergySystem(pv_type=pv,
|
||||
ess_type=ess,
|
||||
grid_type= grid)
|
||||
benefit = energySystem.simulate(data, time_interval)
|
||||
results.loc[pv_capacity,ess_capacity] = cal_profit(energySystem, benefit)
|
||||
affords.loc[pv_capacity,ess_capacity] = energySystem.afford
|
||||
overload_cnt.loc[pv_capacity,ess_capacity] = energySystem.overload_cnt
|
||||
costs.loc[pv_capacity,ess_capacity] = energySystem.ess.capacity * energySystem.ess.cost_per_kW + energySystem.pv.capacity * energySystem.pv.cost_per_kW
|
||||
pv_generated = energySystem.day_generated
|
||||
ess_generated = energySystem.hour_stored
|
||||
ess_generated_2 = energySystem.hour_stored_2
|
||||
plt.figure(figsize=(10,8));
|
||||
plt.plot(ess_generated)
|
||||
plt.xlabel('day #')
|
||||
plt.ylabel('SoC %')
|
||||
plt.title(f'14:00 ESS SoC \n PV cap:{pv_capacity}, ESS cap:{ess_capacity}')
|
||||
plt.savefig(f'plots/ess/1400-{pv_capacity}-{ess_capacity}.png')
|
||||
plt.close()
|
||||
plt.figure(figsize=(10,8));
|
||||
plt.plot(ess_generated_2)
|
||||
plt.xlabel('day #')
|
||||
plt.ylabel('SoC%')
|
||||
plt.title(f'08:00 ESS SoC \n PV cap:{pv_capacity}, ESS cap:{ess_capacity}')
|
||||
plt.savefig(f'plots/ess/0800-{pv_capacity}-{ess_capacity}.png')
|
||||
plt.close()
|
||||
print(energySystem.unmet)
|
||||
spring_week_start = energySystem.season_start
|
||||
spring_week_end = spring_week_start + energySystem.week_length
|
||||
# summer_week_start = energySystem.season_start + 1 * energySystem.season_step
|
||||
# summer_week_end = summer_week_start + energySystem.week_length
|
||||
# autumn_week_start = energySystem.season_start + 2 * energySystem.season_step
|
||||
# autumn_week_end = autumn_week_start + energySystem.week_length
|
||||
# winter_week_start = energySystem.season_start + 3 * energySystem.season_step
|
||||
# winter_week_end = winter_week_start+ energySystem.week_length
|
||||
|
||||
spring_consume_data = []
|
||||
# summer_consume_data = []
|
||||
# autumn_consume_data = []
|
||||
# winter_consume_data = []
|
||||
for index, row in data.iterrows():
|
||||
if index in range(spring_week_start, spring_week_end):
|
||||
spring_consume_data.append(row['demand'])
|
||||
# elif index in range(summer_week_start, summer_week_end):
|
||||
# summer_consume_data.append(row['demand'])
|
||||
# elif index in range(autumn_week_start, autumn_week_end):
|
||||
# autumn_consume_data.append(row['demand'])
|
||||
# elif index in range(winter_week_start, winter_week_end):
|
||||
# winter_consume_data.append(row['demand'])
|
||||
|
||||
spring_week_time = list(range(spring_week_start, spring_week_end))
|
||||
# summer_week_time = list(range(summer_week_start, summer_week_end))
|
||||
# autumn_week_time = list(range(autumn_week_start, autumn_week_end))
|
||||
# winter_week_time = list(range(winter_week_start, winter_week_end))
|
||||
|
||||
spring_pv_generated = energySystem.spring_week_gen
|
||||
# summer_pv_generated = energySystem.summer_week_gen
|
||||
# autumn_pv_generated = energySystem.autumn_week_gen
|
||||
# winter_pv_generated = energySystem.winter_week_gen
|
||||
|
||||
# spring_soc = energySystem.spring_week_soc
|
||||
# summer_soc = energySystem.summer_week_soc
|
||||
# autumn_soc = energySystem.autumn_week_soc
|
||||
# winter_soc = energySystem.winter_week_soc
|
||||
|
||||
|
||||
# fig, ax1 = plt.subplots()
|
||||
|
||||
plt.plot(spring_week_time, spring_pv_generated, label = 'pv generation')
|
||||
plt.plot(spring_week_time, spring_consume_data, label = 'factory consume')
|
||||
plt.ylabel('Power / kW')
|
||||
plt.xlabel('15 min #')
|
||||
plt.title(f'ess: {energySystem.ess.capacity/1000 } MWh pv: {energySystem.pv.capacity/1000 } MW spring week generate condition')
|
||||
plt.legend()
|
||||
plt.savefig(f'plots/{energySystem.ess.capacity}-{energySystem.pv.capacity}-spring.png')
|
||||
plt.close()
|
||||
|
||||
# plt.plot(summer_week_time, summer_pv_generated, label = 'pv generation')
|
||||
# plt.plot(summer_week_time, summer_consume_data, label = 'factory consume')
|
||||
# plt.ylabel('Power / kW')
|
||||
# plt.xlabel('15 min #')
|
||||
# plt.title(f'ess: {energySystem.ess.capacity/1000 } MWh pv: {energySystem.pv.capacity/1000 } MW summer week generate condition')
|
||||
# plt.legend()
|
||||
# plt.savefig(f'plots/{energySystem.ess.capacity}-{energySystem.pv.capacity}-summer.png')
|
||||
# plt.close()
|
||||
|
||||
# plt.plot(autumn_week_time, autumn_pv_generated, label = 'pv generation')
|
||||
# plt.plot(autumn_week_time, autumn_consume_data, label = 'factory consume')
|
||||
# plt.ylabel('Power / kW')
|
||||
# plt.xlabel('15 min #')
|
||||
# plt.title(f'ess: {energySystem.ess.capacity/1000 } MWh pv: {energySystem.pv.capacity/1000 } MW autumn week generate condition')
|
||||
# plt.legend()
|
||||
# plt.savefig(f'plots/{energySystem.ess.capacity}-{energySystem.pv.capacity}-autumn.png')
|
||||
# plt.close()
|
||||
|
||||
# plt.plot(winter_week_time, winter_pv_generated, label = 'pv generation')
|
||||
# plt.plot(winter_week_time, winter_consume_data, label = 'factory consume')
|
||||
# plt.ylabel('Power / kW')
|
||||
# plt.xlabel('15 min #')
|
||||
# plt.title(f'ess: {energySystem.ess.capacity/1000 } MWh pv: {energySystem.pv.capacity/1000 } MW winter week generate condition')
|
||||
# plt.legend()
|
||||
# plt.savefig(f'plots/{energySystem.ess.capacity}-{energySystem.pv.capacity}-winter.png')
|
||||
# plt.close()
|
||||
|
||||
plt.figure();
|
||||
plt.plot(pv_generated)
|
||||
plt.xlabel('day #')
|
||||
plt.ylabel('Electricity kWh')
|
||||
plt.title(f'PV generated pv cap:{pv_capacity}, ess cap:{ess_capacity}')
|
||||
plt.savefig(f'plots/pv/{pv_capacity}-{ess_capacity}.png')
|
||||
plt.close()
|
||||
|
||||
|
||||
# plt.show()
|
||||
|
||||
|
||||
|
||||
|
||||
# results = results.astype(float)
|
||||
|
||||
|
||||
# pv = pv_config(capacity=100000,cost_per_kW=200,lifetime=25,loss=0.95)
|
||||
# ess = ess_config(capacity=100000,cost_per_kW=300,lifetime=25,loss=0.95,charge_power=100000,discharge_power=100000)
|
||||
# grid = grid_config(price_schedule=price_schedule, capacity=5000, grid_loss=0.95, sell_price=0.4)
|
||||
# grid = grid_config(capacity=50000, grid_loss=0.95, sell_price=0.4)
|
||||
|
||||
|
||||
# print(benefit)
|
||||
|
||||
|
||||
# In[47]:
|
||||
|
||||
|
||||
energySystem.unmet
|
||||
|
||||
|
||||
# In[48]:
|
||||
|
||||
|
||||
df=results
|
||||
df = df.astype(float)
|
||||
df.index = df.index / 1000
|
||||
df.columns = df.columns / 1000
|
||||
min_value = df.min().min()
|
||||
max_value = df.max().max()
|
||||
max_scale = max(abs(min_value/1000), abs(max_value/1000))
|
||||
plt.figure(figsize=figure_size)
|
||||
cmap = sns.color_palette("coolwarm", as_cmap=True)
|
||||
sns.heatmap(df/1000, annot=True, fmt=".1f", cmap=cmap, vmin=-max_scale, vmax=max_scale)
|
||||
plt.title('Benefit Heatmap Based on PV and ESS Capacities (kEUR/year)')
|
||||
plt.gca().invert_yaxis()
|
||||
plt.xlabel('ESS Capacity (MWh)')
|
||||
plt.ylabel('PV Capacity (MW)')
|
||||
plt.savefig('plots/benefit.png')
|
||||
|
||||
|
||||
# In[49]:
|
||||
|
||||
|
||||
df = costs
|
||||
df = df.astype(int)
|
||||
df.index = df.index / 1000
|
||||
df.columns = df.columns / 1000
|
||||
|
||||
plt.figure(figsize=figure_size)
|
||||
sns.heatmap(df/1000000, annot=True, fmt=".1f", cmap='viridis')
|
||||
plt.title('Costs of the PV System/million Eur')
|
||||
plt.gca().invert_yaxis()
|
||||
plt.xlabel('ESS Capacity (MWh)')
|
||||
plt.ylabel('PV Capacity (MW)')
|
||||
plt.savefig('plots/costs.png')
|
||||
|
||||
# pv = pv_config(capacity=100000,cost_per_kW=200,lifetime=25,loss=0.95)
|
||||
# ess = ess_config(capacity=100000,cost_per_kW=300,lifetime=25,loss=0.95,charge_power=100000,discharge_power=100000)
|
||||
@ -68,4 +472,33 @@ if __name__ == '__main__':
|
||||
# grid = grid_config(capacity=50000, grid_loss=0.95, sell_price=0.4)
|
||||
|
||||
|
||||
# print(benefit)
|
||||
# print(benefit)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# In[50]:
|
||||
|
||||
|
||||
from matplotlib.colors import LinearSegmentedColormap
|
||||
df = overload_cnt
|
||||
df = df.astype(int)
|
||||
df.index = df.index / 1000
|
||||
df.columns = df.columns / 1000
|
||||
min_value = df.min().min()
|
||||
max_value = df.max().max()
|
||||
max_scale = max(abs(min_value/1000), abs(max_value/1000))
|
||||
|
||||
plt.figure(figsize=figure_size)
|
||||
cmap = LinearSegmentedColormap.from_list("", ["white", "blue"])
|
||||
sns.heatmap(df/(4*24*365), annot=True, fmt=".1f", cmap=cmap, vmin=0, vmax=1)
|
||||
plt.title('Probability of unmet electricity demands')
|
||||
plt.gca().invert_yaxis()
|
||||
plt.xlabel('ESS Capacity (MWh)')
|
||||
plt.ylabel('PV Capacity (MW)')
|
||||
plt.savefig('plots/unmet.png')
|
||||
|
||||
|
@ -2,7 +2,10 @@ import pandas as pd
|
||||
import numpy as np
|
||||
import csv
|
||||
|
||||
df_sunlight = pd.read_excel('lightintensity.xlsx', header=None, names=['SunlightIntensity'])
|
||||
sunlight_file_name = 'lightintensity.xlsx'
|
||||
factory_demand_file_name = 'factory_power1.xlsx'
|
||||
|
||||
df_sunlight = pd.read_excel(sunlight_file_name, header=None, names=['SunlightIntensity'])
|
||||
|
||||
start_date = '2023-01-01 00:00:00' # 根据数据的实际开始日期调整
|
||||
hours = pd.date_range(start=start_date, periods=len(df_sunlight), freq='h')
|
||||
@ -11,7 +14,7 @@ df_sunlight.set_index('Time', inplace=True)
|
||||
|
||||
df_sunlight_resampled = df_sunlight.resample('15min').interpolate()
|
||||
|
||||
df_power = pd.read_excel('factory_power.xlsx',
|
||||
df_power = pd.read_excel(factory_demand_file_name,
|
||||
header=None,
|
||||
names=['FactoryPower'],
|
||||
dtype={'FactoryPower': float})
|
||||
@ -42,9 +45,11 @@ print(df_combined2.head())
|
||||
with open('combined_data.csv', 'w', newline='') as file:
|
||||
writer = csv.writer(file)
|
||||
writer.writerow(['time', 'sunlight', 'demand','price'])
|
||||
cnt = 0
|
||||
for index, row in df_combined2.iterrows():
|
||||
time_formatted = index.strftime('%H:%M')
|
||||
writer.writerow([time_formatted, row['SunlightIntensity'], row['FactoryPower'],row['ElectricityPrice']])
|
||||
|
||||
print('The file is written to combined_data.csv')
|
||||
|
||||
# combined_data.to_csv('updated_simulation_with_prices.csv', index=False)
|
||||
|
Loading…
Reference in New Issue
Block a user