Compare commits
16 Commits
a330946f71
...
0.0.7
Author | SHA1 | Date | |
---|---|---|---|
|
df2f953678 | ||
|
3740136d7c | ||
|
e04e01e943 | ||
|
9f472b4bf4 | ||
|
127f005dcd | ||
|
c5edf456c5 | ||
|
d8ece46e14 | ||
|
566ebca6cd | ||
|
c8c37b756c | ||
|
4f1a47d505 | ||
|
ad9b5e6a19 | ||
|
33871fba77 | ||
|
9d143399ed | ||
|
72d4ce811e | ||
|
060fa5bff1 | ||
|
ebebd2d481 |
@@ -21,6 +21,13 @@ class EnergySystem:
|
||||
self.summer_week_soc = []
|
||||
self.autumn_week_soc = []
|
||||
self.winter_week_soc = []
|
||||
self.factory_demand = []
|
||||
self.buy_price_kWh = []
|
||||
self.sell_price_kWh = []
|
||||
self.pv_generated_kWh = []
|
||||
self.grid_need_power_kW = []
|
||||
self.time = []
|
||||
self.ess_rest = 0
|
||||
self.granularity = 4
|
||||
self.season_step = self.granularity * 24 * 7 * 12
|
||||
self.season_start= self.granularity * 24 * 7 * 2
|
||||
@@ -35,9 +42,14 @@ class EnergySystem:
|
||||
# 如果ESS也不足以满足需求,再从电网获取 - 当ESS中的存储电量也不足以补充时,再从电网购买剩余所需电量。
|
||||
def simulate(self, data, time_interval):
|
||||
total_benefit = 0
|
||||
total_netto_benefit = 0
|
||||
total_gen = 0
|
||||
net_grid = 0.
|
||||
for index, row in data.iterrows():
|
||||
time = row['time']
|
||||
sunlight_intensity = row['sunlight']
|
||||
self.time.append(time)
|
||||
# sunlight_intensity = row['sunlight']
|
||||
pv_yield = row['PV yield[kW/kWp]']
|
||||
factory_demand = row['demand']
|
||||
electricity_price = row['buy']
|
||||
sell_price = row['sell']
|
||||
@@ -53,8 +65,13 @@ class EnergySystem:
|
||||
soc = self.ess.storage / self.ess.capacity
|
||||
self.hour_stored_2.append(soc)
|
||||
|
||||
generated_pv_power = self.pv.capacity * sunlight_intensity # 生成的功率,单位 kW
|
||||
generated_pv_power = self.pv.capacity * pv_yield# 生成的功率,单位 kW
|
||||
generated_pv_energy = generated_pv_power * time_interval * self.pv.loss # 生成的能量,单位 kWh
|
||||
self.pv_generated_kWh.append(generated_pv_energy)
|
||||
self.factory_demand.append(factory_demand)
|
||||
self.buy_price_kWh.append(electricity_price)
|
||||
self.sell_price_kWh.append(sell_price)
|
||||
|
||||
self.generated += generated_pv_energy
|
||||
# pv生成的能量如果比工厂的需求要大
|
||||
if generated_pv_energy >= factory_demand * time_interval:
|
||||
@@ -72,6 +89,7 @@ class EnergySystem:
|
||||
# 节省的能量 = 工厂需求的能量 * 时间段
|
||||
# total_energy = factory_demand * time_interval
|
||||
saved_energy = factory_demand * time_interval
|
||||
self.grid_need_power_kW.append(0)
|
||||
# pv比工厂的需求小
|
||||
else:
|
||||
# 从ess中需要的电量 = 工厂需要的电量 - pv中的电量
|
||||
@@ -87,6 +105,7 @@ class EnergySystem:
|
||||
self.ess.storage -= discharging_power
|
||||
# 节省下来的能量 = pv的能量 + 放出来的能量
|
||||
saved_energy = generated_pv_energy + discharging_power * self.ess.loss
|
||||
self.grid_need_power_kW.append(0)
|
||||
else:
|
||||
# 如果存的电量不够
|
||||
# 需要把ess中的所有电量释放出来
|
||||
@@ -103,15 +122,18 @@ class EnergySystem:
|
||||
self.ess.storage = 0
|
||||
needed_from_grid = factory_demand * time_interval - saved_energy
|
||||
net_grid = min(self.grid.capacity * time_interval, needed_from_grid) * self.grid.loss
|
||||
self.grid_need_power_kW.append(needed_from_grid * 4)
|
||||
# grid_energy += net_grid
|
||||
# total_energy += net_grid
|
||||
# print(total_energy)
|
||||
# 工厂需求量-总能量
|
||||
# unmet_demand = max(0, factory_demand * time_interval - total_energy)
|
||||
# benefit = (total_energy - unmet_demand) * electricity_price
|
||||
total_gen += saved_energy
|
||||
benefit = (saved_energy) * electricity_price
|
||||
cost = net_grid * electricity_price
|
||||
# print(f"time:{time} benefit: {benefit}, cost: {cost}")
|
||||
total_netto_benefit += benefit
|
||||
total_benefit += benefit - cost
|
||||
# # spring
|
||||
week_start = self.season_start
|
||||
@@ -119,6 +141,7 @@ class EnergySystem:
|
||||
if index in range(week_start, week_end):
|
||||
self.spring_week_gen.append(generated_pv_power)
|
||||
self.spring_week_soc.append(self.ess.storage / self.ess.capacity)
|
||||
self.ess_rest = self.ess.storage
|
||||
# summer
|
||||
# week_start += self.season_step
|
||||
# week_end += self.season_step
|
||||
@@ -137,4 +160,4 @@ class EnergySystem:
|
||||
# self.winter_week_gen.append(generated_pv_power)
|
||||
# self.winter_week_soc.append(self.ess.storage / self.ess.capacity)
|
||||
|
||||
return total_benefit
|
||||
return (total_benefit, total_netto_benefit, total_gen)
|
70079
combined_data.csv
70079
combined_data.csv
File diff suppressed because it is too large
Load Diff
16
config.json
16
config.json
@@ -17,12 +17,12 @@
|
||||
"pv_capacities":{
|
||||
"begin": 0,
|
||||
"end": 50000,
|
||||
"groups": 5
|
||||
"groups": 3
|
||||
},
|
||||
"ess_capacities":{
|
||||
"begin": 0,
|
||||
"end": 100000,
|
||||
"groups": 10
|
||||
"groups": 3
|
||||
},
|
||||
"time_interval":{
|
||||
"numerator": 15,
|
||||
@@ -31,7 +31,8 @@
|
||||
"annotated": {
|
||||
"unmet_prob": false,
|
||||
"benefit": false,
|
||||
"cost": false
|
||||
"cost": false,
|
||||
"roi": false
|
||||
},
|
||||
"figure_size":{
|
||||
"height": 9,
|
||||
@@ -40,6 +41,13 @@
|
||||
"plot_title":{
|
||||
"unmet_prob": "Coverage Rate of Factory Electrical Demands",
|
||||
"cost": "Costs of Microgrid system [m-EUR]",
|
||||
"benefit": "Financial Profit Based on Py & Ess Configuration (k-EUR / year)"
|
||||
"benefit": "Financial Profit Based on Py & Ess Configuration (k-EUR / year)",
|
||||
"roi": "ROI"
|
||||
},
|
||||
"data_path": {
|
||||
"pv_yield": "read_data/Serbia.csv",
|
||||
"demand": "read_data/factory_power1.csv",
|
||||
"sell": "read_data/electricity_price_data_sell.csv",
|
||||
"buy": "read_data/electricity_price_data.csv"
|
||||
}
|
||||
}
|
@@ -10,12 +10,12 @@ class pv_config:
|
||||
def get_cost_per_year(self):
|
||||
return self.capacity * self.cost_per_kW / self.lifetime
|
||||
class ess_config:
|
||||
def __init__(self, capacity, cost_per_kW, lifetime, loss, charge_power, discharge_power):
|
||||
def __init__(self, capacity, cost_per_kW, lifetime, loss, charge_power, discharge_power, storage=0):
|
||||
self.capacity = capacity
|
||||
self.cost_per_kW = cost_per_kW
|
||||
self.lifetime = lifetime
|
||||
self.loss = loss
|
||||
self.storage = 0
|
||||
self.storage = storage
|
||||
self.charge_power = charge_power
|
||||
self.discharge_power = discharge_power
|
||||
def get_cost(self):
|
||||
|
File diff suppressed because it is too large
Load Diff
452
main.ipynb
452
main.ipynb
File diff suppressed because one or more lines are too long
663
main.py
663
main.py
@@ -1,12 +1,21 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# In[14]:
|
||||
# In[83]:
|
||||
|
||||
|
||||
import os
|
||||
import glob
|
||||
import shutil
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.ticker as ticker
|
||||
from matplotlib.ticker import FuncFormatter
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import os
|
||||
import seaborn as sns
|
||||
import json
|
||||
from matplotlib.colors import LinearSegmentedColormap
|
||||
|
||||
def clear_folder_make_ess_pv(folder_path):
|
||||
if os.path.isdir(folder_path):
|
||||
@@ -19,7 +28,7 @@ folder_path = 'plots'
|
||||
clear_folder_make_ess_pv(folder_path)
|
||||
|
||||
|
||||
# In[15]:
|
||||
# In[84]:
|
||||
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
@@ -30,18 +39,21 @@ from EnergySystem import EnergySystem
|
||||
from config import pv_config, grid_config, ess_config
|
||||
|
||||
|
||||
# In[16]:
|
||||
# In[85]:
|
||||
|
||||
|
||||
import json
|
||||
|
||||
print("Version 0.0.2")
|
||||
print("Version 0.0.5")
|
||||
|
||||
with open('config.json', 'r') as f:
|
||||
js_data = json.load(f)
|
||||
|
||||
data = pd.read_csv('combined_data.csv')
|
||||
|
||||
|
||||
|
||||
time_interval = js_data["time_interval"]["numerator"] / js_data["time_interval"]["denominator"]
|
||||
# print(time_interval)
|
||||
|
||||
pv_loss = js_data["pv"]["loss"]
|
||||
pv_cost_per_kW = js_data["pv"]["cost_per_kW"]
|
||||
@@ -66,22 +78,45 @@ ess_groups = js_data["ess_capacities"]["groups"]
|
||||
annot_unmet = js_data["annotated"]["unmet_prob"]
|
||||
annot_benefit = js_data["annotated"]["benefit"]
|
||||
annot_cost = js_data["annotated"]["cost"]
|
||||
annot_roi = js_data["annotated"]["roi"]
|
||||
|
||||
title_unmet = js_data["plot_title"]["unmet_prob"]
|
||||
title_cost = js_data["plot_title"]["cost"]
|
||||
title_benefit = js_data["plot_title"]["benefit"]
|
||||
title_roi = js_data["plot_title"]["roi"]
|
||||
|
||||
|
||||
figure_size = (js_data["figure_size"]["length"], js_data["figure_size"]["height"])
|
||||
|
||||
data = pd.read_csv('combined_data.csv')
|
||||
|
||||
granularity = js_data["time_interval"]["numerator"]
|
||||
|
||||
months_days = [31,28,31,30,31,30,31,31,30,31,30,31]
|
||||
def get_month_coe(num, granularity):
|
||||
return 60 / granularity * 24 * months_days[num]
|
||||
|
||||
months_index = [get_month_coe(num, granularity) for num in range(12)]
|
||||
months_data = []
|
||||
for i in range(1,12):
|
||||
months_index[i] += months_index[i-1]
|
||||
for i in range(12):
|
||||
start = 0 if i == 0 else months_index[i-1]
|
||||
end = months_index[i]
|
||||
months_data.append(data.iloc[int(start):int(end)])
|
||||
|
||||
|
||||
|
||||
|
||||
pv_capacities = np.linspace(pv_begin, pv_end, pv_groups)
|
||||
ess_capacities = np.linspace(ess_begin, ess_end, ess_groups)
|
||||
results = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
affords = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
# results = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
# affords = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
# costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
# overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
|
||||
|
||||
# In[17]:
|
||||
# In[86]:
|
||||
|
||||
|
||||
hour_demand = []
|
||||
@@ -97,164 +132,414 @@ plt.savefig('plots/demand.png')
|
||||
plt.close()
|
||||
|
||||
|
||||
# In[18]:
|
||||
# In[87]:
|
||||
|
||||
|
||||
def cal_profit(es: EnergySystem, saved_money):
|
||||
profit = saved_money - es.ess.get_cost_per_year() - es.pv.get_cost_per_year()
|
||||
def draw_results(results, filename, title_benefit, annot_benefit=False, figure_size=(10, 10)):
|
||||
df=results
|
||||
df = df.astype(float)
|
||||
df.index = df.index / 1000
|
||||
df.index = df.index.map(int)
|
||||
df.columns = df.columns / 1000
|
||||
df.columns = df.columns.map(int)
|
||||
min_value = df.min().min()
|
||||
max_value = df.max().max()
|
||||
max_scale = max(abs(min_value/1000), abs(max_value/1000))
|
||||
|
||||
df[df.columns[-1] + 1] = df.iloc[:, -1]
|
||||
new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)
|
||||
for i in df.columns:
|
||||
new_Data[i] = df[i].iloc[-1]
|
||||
df = pd.concat([df, new_Data])
|
||||
|
||||
X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))
|
||||
|
||||
def fmt(x,pos):
|
||||
return '{:.0f}'.format(x/1000)
|
||||
|
||||
cmap = sns.color_palette("coolwarm", as_cmap=True)
|
||||
plt.figure(figsize=figure_size)
|
||||
ax = sns.heatmap(df/1000, fmt=".1f", cmap=cmap, vmin=-max_scale, vmax=max_scale, annot=annot_benefit)
|
||||
CS = ax.contour(X, Y, df, colors='black', alpha=0.5)
|
||||
ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))
|
||||
plt.title(title_benefit)
|
||||
plt.gca().invert_yaxis()
|
||||
plt.xlim(0, df.shape[1] - 1)
|
||||
plt.ylim(0, df.shape[0] - 1)
|
||||
plt.xlabel('ESS Capacity (MWh)')
|
||||
plt.ylabel('PV Capacity (MW)')
|
||||
plt.savefig(filename)
|
||||
|
||||
|
||||
# In[88]:
|
||||
|
||||
|
||||
def draw_roi(costs, results, filename, title_roi, days=365, annot_roi=False, figure_size=(10, 10)):
|
||||
costs = costs.astype(float)
|
||||
costs = costs / 365
|
||||
costs = costs * days
|
||||
|
||||
df = results
|
||||
df = costs / df
|
||||
if 0 in df.index and 0 in df.columns:
|
||||
df.loc[0,0] = 100
|
||||
df[df > 80] = 100
|
||||
# print(df)
|
||||
|
||||
df = df.astype(float)
|
||||
df.index = df.index / 1000
|
||||
df.index = df.index.map(int)
|
||||
df.columns = df.columns / 1000
|
||||
df.columns = df.columns.map(int)
|
||||
min_value = df.min().min()
|
||||
max_value = df.max().max()
|
||||
# print(max_value)
|
||||
max_scale = max(abs(min_value), abs(max_value))
|
||||
|
||||
df[df.columns[-1] + 1] = df.iloc[:, -1]
|
||||
new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)
|
||||
for i in df.columns:
|
||||
new_Data[i] = df[i].iloc[-1]
|
||||
df = pd.concat([df, new_Data])
|
||||
|
||||
X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))
|
||||
|
||||
def fmt(x,pos):
|
||||
return '{:.0f}'.format(x)
|
||||
|
||||
cmap = sns.color_palette("Greys", as_cmap=True)
|
||||
plt.figure(figsize=figure_size)
|
||||
ax = sns.heatmap(df, fmt=".1f", cmap=cmap, vmin=0, vmax=100, annot=annot_benefit)
|
||||
CS = ax.contour(X, Y, df, colors='black', alpha=0.5)
|
||||
ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))
|
||||
plt.title(title_roi)
|
||||
plt.gca().invert_yaxis()
|
||||
plt.xlim(0, df.shape[1] - 1)
|
||||
plt.ylim(0, df.shape[0] - 1)
|
||||
plt.xlabel('ESS Capacity (MWh)')
|
||||
plt.ylabel('PV Capacity (MW)')
|
||||
plt.savefig(filename)
|
||||
plt.close()
|
||||
|
||||
|
||||
# In[89]:
|
||||
|
||||
|
||||
def draw_cost(costs, filename, title_cost, annot_cost=False, figure_size=(10, 10)):
|
||||
df = costs
|
||||
df = df.astype(int)
|
||||
df.index = df.index / 1000
|
||||
df.index = df.index.map(int)
|
||||
df.columns = df.columns / 1000
|
||||
df.columns = df.columns.map(int)
|
||||
|
||||
df[df.columns[-1] + 1] = df.iloc[:, -1]
|
||||
new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)
|
||||
for i in df.columns:
|
||||
new_Data[i] = df[i].iloc[-1]
|
||||
df = pd.concat([df, new_Data])
|
||||
X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))
|
||||
|
||||
def fmt(x, pos):
|
||||
return '{:.0f}'.format(x / 1000000)
|
||||
|
||||
plt.figure(figsize=figure_size)
|
||||
ax = sns.heatmap(df/1000000, fmt=".1f", cmap='viridis', annot=annot_cost)
|
||||
CS = ax.contour(X, Y, df, colors='black', alpha=0.5)
|
||||
ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))
|
||||
plt.title(title_cost)
|
||||
plt.gca().invert_yaxis()
|
||||
plt.xlim(0, df.shape[1] - 1)
|
||||
plt.ylim(0, df.shape[0] - 1)
|
||||
plt.xlabel('ESS Capacity (MWh)')
|
||||
plt.ylabel('PV Capacity (MW)')
|
||||
plt.savefig(filename)
|
||||
plt.close()
|
||||
|
||||
|
||||
# In[90]:
|
||||
|
||||
|
||||
def draw_overload(overload_cnt, filename, title_unmet, annot_unmet=False, figure_size=(10, 10), days=365, granularity=15):
|
||||
df = overload_cnt
|
||||
# print(days, granularity)
|
||||
coef = 60 / granularity * days * 24
|
||||
# print(coef)
|
||||
# print(df)
|
||||
df = ( coef - df) / coef
|
||||
# print(df)
|
||||
|
||||
df = df.astype(float)
|
||||
df.index = df.index / 1000
|
||||
df.index = df.index.map(int)
|
||||
df.columns = df.columns / 1000
|
||||
df.columns = df.columns.map(int)
|
||||
|
||||
|
||||
df[df.columns[-1] + 1] = df.iloc[:, -1]
|
||||
new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)
|
||||
for i in df.columns:
|
||||
new_Data[i] = df[i].iloc[-1]
|
||||
# print(new_Data)
|
||||
df = pd.concat([df, new_Data])
|
||||
|
||||
|
||||
plt.figure(figsize=figure_size)
|
||||
cmap = LinearSegmentedColormap.from_list("", ["white", "blue"])
|
||||
ax = sns.heatmap(df, fmt=".00%", cmap=cmap, vmin=0, vmax=1, annot=annot_unmet)
|
||||
|
||||
cbar = ax.collections[0].colorbar
|
||||
cbar.set_ticks([0, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1])
|
||||
cbar.set_ticklabels(['0%', '10%', '20%', '30%', '40%', '50%', '60%', '70%', '80%', '90%', '100%'])
|
||||
cbar.ax.yaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos: f'{x:.0%}'))
|
||||
X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))
|
||||
|
||||
def fmt(x, pos):
|
||||
return '{:.0f}%'.format(x * 100)
|
||||
CS = ax.contour(X, Y, df, colors='black', alpha=0.5)
|
||||
|
||||
ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))
|
||||
|
||||
plt.xlim(0, df.shape[1] - 1)
|
||||
plt.ylim(0, df.shape[0] - 1)
|
||||
plt.title(title_unmet)
|
||||
plt.xlabel('ESS Capacity (MWh)')
|
||||
plt.ylabel('PV Capacity (MW)')
|
||||
plt.savefig(filename)
|
||||
plt.close()
|
||||
|
||||
|
||||
# In[91]:
|
||||
|
||||
|
||||
def cal_profit(es: EnergySystem, saved_money, days):
|
||||
profit = saved_money - es.ess.get_cost_per_year() / 365 * days - es.pv.get_cost_per_year() / 365 * days
|
||||
return profit
|
||||
|
||||
|
||||
# In[24]:
|
||||
# In[92]:
|
||||
|
||||
|
||||
for ess_capacity in ess_capacities:
|
||||
print(f"ess_capacity:{ess_capacity}")
|
||||
def generate_data(pv_capacity, pv_cost_per_kW, pv_lifetime, pv_loss, ess_capacity, ess_cost_per_kW, ess_lifetime, ess_loss, grid_capacity, grid_loss, sell_price, time_interval, data, days, storage=0):
|
||||
pv = pv_config(capacity=pv_capacity,
|
||||
cost_per_kW=pv_cost_per_kW,
|
||||
lifetime=pv_lifetime,
|
||||
loss=pv_loss)
|
||||
ess = ess_config(capacity=ess_capacity,
|
||||
cost_per_kW=ess_cost_per_kW,
|
||||
lifetime=ess_lifetime,
|
||||
loss=ess_loss,
|
||||
charge_power=ess_capacity,
|
||||
discharge_power=ess_capacity,
|
||||
storage=storage)
|
||||
grid = grid_config(capacity=grid_capacity,
|
||||
grid_loss=grid_loss,
|
||||
sell_price= sell_price)
|
||||
energySystem = EnergySystem(pv_type=pv,
|
||||
ess_type=ess,
|
||||
grid_type= grid)
|
||||
(benefit, netto_benefit, gen_energy) = energySystem.simulate(data, time_interval)
|
||||
results = cal_profit(energySystem, benefit, days)
|
||||
overload_cnt = energySystem.overload_cnt
|
||||
costs = energySystem.ess.capacity * energySystem.ess.cost_per_kW + energySystem.pv.capacity * energySystem.pv.cost_per_kW
|
||||
return (results,
|
||||
overload_cnt,
|
||||
costs,
|
||||
netto_benefit,
|
||||
gen_energy,
|
||||
energySystem.generated,
|
||||
energySystem.ess_rest,
|
||||
energySystem.factory_demand,
|
||||
energySystem.buy_price_kWh,
|
||||
energySystem.sell_price_kWh,
|
||||
energySystem.pv_generated_kWh,
|
||||
energySystem.grid_need_power_kW,
|
||||
energySystem.time)
|
||||
|
||||
|
||||
|
||||
# In[93]:
|
||||
|
||||
|
||||
from tqdm import tqdm
|
||||
months_results = []
|
||||
months_costs = []
|
||||
months_overload = []
|
||||
months_nettos = []
|
||||
months_gen_energy = []
|
||||
months_gen_energy2 = []
|
||||
months_ess_rest = pd.DataFrame(30, index=pv_capacities, columns= ess_capacities)
|
||||
months_csv_data = {}
|
||||
for index, month_data in tqdm(enumerate(months_data), total=len(months_data), position=0, leave= True):
|
||||
results = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
nettos = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
gen_energies = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
gen_energies2 = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
factory_demands = {}
|
||||
buy_prices= {}
|
||||
sell_prices = {}
|
||||
pv_generates = {}
|
||||
grid_need_powers = {}
|
||||
times = {}
|
||||
for pv_capacity in tqdm(pv_capacities, total=len(pv_capacities), desc=f'generating pv for month {index + 1}',position=1, leave=False):
|
||||
factory_demands[pv_capacity] = {}
|
||||
buy_prices[pv_capacity] = {}
|
||||
sell_prices[pv_capacity] = {}
|
||||
pv_generates[pv_capacity] = {}
|
||||
grid_need_powers[pv_capacity] = {}
|
||||
times[pv_capacity] = {}
|
||||
for ess_capacity in ess_capacities:
|
||||
(result,
|
||||
overload,
|
||||
cost,
|
||||
netto,
|
||||
gen_energy,
|
||||
gen_energy2,
|
||||
ess_rest,
|
||||
factory_demand,
|
||||
buy_price,
|
||||
sell_price,
|
||||
pv_generate,
|
||||
grid_need_power,
|
||||
time) = generate_data(pv_capacity=pv_capacity,
|
||||
pv_cost_per_kW=pv_cost_per_kW,
|
||||
pv_lifetime=pv_lifetime,
|
||||
pv_loss=pv_loss,
|
||||
ess_capacity=ess_capacity,
|
||||
ess_cost_per_kW=ess_cost_per_kW,
|
||||
ess_lifetime=ess_lifetime,
|
||||
ess_loss=ess_loss,
|
||||
grid_capacity=grid_capacity,
|
||||
grid_loss=grid_loss,
|
||||
sell_price=sell_price,
|
||||
time_interval=time_interval,
|
||||
data=month_data,
|
||||
days=months_days[index],
|
||||
storage=months_ess_rest.loc[pv_capacity, ess_capacity])
|
||||
results.loc[pv_capacity,ess_capacity] = result
|
||||
overload_cnt.loc[pv_capacity,ess_capacity] = overload
|
||||
costs.loc[pv_capacity,ess_capacity] = cost
|
||||
nettos.loc[pv_capacity,ess_capacity] = netto
|
||||
gen_energies.loc[pv_capacity, ess_capacity] = gen_energy
|
||||
gen_energies2.loc[pv_capacity, ess_capacity] = gen_energy2
|
||||
months_ess_rest.loc[pv_capacity, ess_capacity] = ess_rest
|
||||
factory_demands[pv_capacity][ess_capacity] = factory_demand
|
||||
buy_prices[pv_capacity][ess_capacity] = buy_price
|
||||
sell_prices[pv_capacity][ess_capacity] = sell_price
|
||||
pv_generates[pv_capacity][ess_capacity] = pv_generate
|
||||
grid_need_powers[pv_capacity][ess_capacity] = grid_need_power
|
||||
times[pv_capacity][ess_capacity] = time
|
||||
months_csv_data[index] = {"factory_demand": factory_demands, "buy_price": buy_prices, "sell_price": sell_prices, "pv_generate": pv_generates, "grid_need_power": grid_need_powers, "time": times}
|
||||
months_results.append(results)
|
||||
months_costs.append(costs)
|
||||
months_overload.append(overload_cnt)
|
||||
months_nettos.append(nettos)
|
||||
months_gen_energy.append(gen_energies)
|
||||
months_gen_energy2.append(gen_energies2)
|
||||
draw_results(results=results,
|
||||
filename=f'plots/pv-{pv_capacity}-ess-{ess_capacity}-month-{index+1}-benefit.png',
|
||||
title_benefit=title_benefit,
|
||||
annot_benefit=annot_benefit,
|
||||
figure_size=figure_size)
|
||||
draw_overload(overload_cnt=overload_cnt,
|
||||
filename=f'plots/pv-{pv_capacity}-ess-{ess_capacity}-month-{index+1}-unmet.png',
|
||||
title_unmet=title_unmet,
|
||||
annot_unmet=annot_unmet,
|
||||
figure_size=figure_size,
|
||||
days=months_days[index],
|
||||
granularity=granularity)
|
||||
annual_result = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
annual_costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
annual_overload = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
annual_nettos = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
annual_gen = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
annual_gen2 = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
|
||||
|
||||
# get the yearly results
|
||||
for pv_capacity in pv_capacities:
|
||||
for ess_capacity in ess_capacities:
|
||||
results = 0
|
||||
costs = 0
|
||||
overload_cnt = 0
|
||||
nettos = 0
|
||||
gen = 0
|
||||
gen2 = 0
|
||||
for index, month_data in enumerate(months_data):
|
||||
results += months_results[index].loc[pv_capacity,ess_capacity]
|
||||
costs += months_costs[index].loc[pv_capacity,ess_capacity]
|
||||
overload_cnt += months_overload[index].loc[pv_capacity, ess_capacity]
|
||||
nettos += months_nettos[index].loc[pv_capacity, ess_capacity]
|
||||
gen += months_gen_energy[index].loc[pv_capacity, ess_capacity]
|
||||
gen2 += months_gen_energy[index].loc[pv_capacity, ess_capacity]
|
||||
annual_result.loc[pv_capacity, ess_capacity] = results
|
||||
annual_costs.loc[pv_capacity, ess_capacity] = costs
|
||||
annual_overload.loc[pv_capacity, ess_capacity] = overload_cnt
|
||||
annual_nettos.loc[pv_capacity, ess_capacity] = nettos
|
||||
annual_gen.loc[pv_capacity, ess_capacity] = gen
|
||||
annual_gen2.loc[pv_capacity, ess_capacity] = gen2
|
||||
|
||||
draw_cost(costs=annual_costs,
|
||||
filename='plots/annual_cost.png',
|
||||
title_cost=title_cost,
|
||||
annot_cost=annot_cost,
|
||||
figure_size=figure_size)
|
||||
draw_results(results=annual_result,
|
||||
filename='plots/annual_benefit.png',
|
||||
title_benefit=title_benefit,
|
||||
annot_benefit=annot_benefit,
|
||||
figure_size=figure_size)
|
||||
draw_overload(overload_cnt=annual_overload,
|
||||
filename='plots/annual_unmet.png',
|
||||
title_unmet=title_unmet,
|
||||
annot_unmet=annot_unmet,
|
||||
figure_size=figure_size)
|
||||
|
||||
|
||||
# In[94]:
|
||||
|
||||
|
||||
def collapse_months_csv_data(months_csv_data, column_name,pv_capacies, ess_capacities):
|
||||
data = {}
|
||||
for pv_capacity in pv_capacities:
|
||||
print(f"pv_capacity:{pv_capacity}")
|
||||
pv = pv_config(capacity=pv_capacity,
|
||||
cost_per_kW=pv_cost_per_kW,
|
||||
lifetime=pv_lifetime,
|
||||
loss=pv_loss)
|
||||
ess = ess_config(capacity=ess_capacity,
|
||||
cost_per_kW=ess_cost_per_kW,
|
||||
lifetime=ess_lifetime,
|
||||
loss=ess_loss,
|
||||
charge_power=ess_capacity,
|
||||
discharge_power=ess_capacity)
|
||||
grid = grid_config(capacity=grid_capacity,
|
||||
grid_loss=grid_loss,
|
||||
sell_price= sell_price)
|
||||
energySystem = EnergySystem(pv_type=pv,
|
||||
ess_type=ess,
|
||||
grid_type= grid)
|
||||
benefit = energySystem.simulate(data, time_interval)
|
||||
results.loc[pv_capacity,ess_capacity] = cal_profit(energySystem, benefit)
|
||||
affords.loc[pv_capacity,ess_capacity] = energySystem.afford
|
||||
overload_cnt.loc[pv_capacity,ess_capacity] = energySystem.overload_cnt
|
||||
costs.loc[pv_capacity,ess_capacity] = energySystem.ess.capacity * energySystem.ess.cost_per_kW + energySystem.pv.capacity * energySystem.pv.cost_per_kW
|
||||
pv_generated = energySystem.day_generated
|
||||
ess_generated = energySystem.hour_stored
|
||||
ess_generated_2 = energySystem.hour_stored_2
|
||||
plt.figure(figsize=(10,8));
|
||||
plt.plot(ess_generated)
|
||||
plt.xlabel('day #')
|
||||
plt.ylabel('SoC %')
|
||||
plt.title(f'14:00 ESS SoC \n PV cap:{pv_capacity}, ESS cap:{ess_capacity}')
|
||||
plt.savefig(f'plots/ess/1400-{pv_capacity}-{ess_capacity}.png')
|
||||
plt.close()
|
||||
plt.figure(figsize=(10,8));
|
||||
plt.plot(ess_generated_2)
|
||||
plt.xlabel('day #')
|
||||
plt.ylabel('SoC%')
|
||||
plt.title(f'08:00 ESS SoC \n PV cap:{pv_capacity}, ESS cap:{ess_capacity}')
|
||||
plt.savefig(f'plots/ess/0800-{pv_capacity}-{ess_capacity}.png')
|
||||
plt.close()
|
||||
# print(energySystem.unmet)
|
||||
# spring_week_start = energySystem.season_start
|
||||
# spring_week_end = spring_week_start + energySystem.week_length
|
||||
# summer_week_start = energySystem.season_start + 1 * energySystem.season_step
|
||||
# summer_week_end = summer_week_start + energySystem.week_length
|
||||
# autumn_week_start = energySystem.season_start + 2 * energySystem.season_step
|
||||
# autumn_week_end = autumn_week_start + energySystem.week_length
|
||||
# winter_week_start = energySystem.season_start + 3 * energySystem.season_step
|
||||
# winter_week_end = winter_week_start+ energySystem.week_length
|
||||
data[pv_capacity] = {}
|
||||
for ess_capacity in ess_capacities:
|
||||
annual_data = []
|
||||
for index, month_data in enumerate(months_data):
|
||||
annual_data.extend(months_csv_data[index][column_name][pv_capacity][ess_capacity])
|
||||
# months_csv_data[index][column_name][pv_capacity][ess_capacity] = months_csv_data[index][column_name][pv_capacity][ess_capacity].tolist()
|
||||
|
||||
# spring_consume_data = []
|
||||
# summer_consume_data = []
|
||||
# autumn_consume_data = []
|
||||
# winter_consume_data = []
|
||||
# for index, row in data.iterrows():
|
||||
# if index in range(spring_week_start, spring_week_end):
|
||||
# spring_consume_data.append(row['demand'])
|
||||
# elif index in range(summer_week_start, summer_week_end):
|
||||
# summer_consume_data.append(row['demand'])
|
||||
# elif index in range(autumn_week_start, autumn_week_end):
|
||||
# autumn_consume_data.append(row['demand'])
|
||||
# elif index in range(winter_week_start, winter_week_end):
|
||||
# winter_consume_data.append(row['demand'])
|
||||
|
||||
# spring_week_time = list(range(spring_week_start, spring_week_end))
|
||||
# summer_week_time = list(range(summer_week_start, summer_week_end))
|
||||
# autumn_week_time = list(range(autumn_week_start, autumn_week_end))
|
||||
# winter_week_time = list(range(winter_week_start, winter_week_end))
|
||||
|
||||
# spring_pv_generated = energySystem.spring_week_gen
|
||||
# summer_pv_generated = energySystem.summer_week_gen
|
||||
# autumn_pv_generated = energySystem.autumn_week_gen
|
||||
# winter_pv_generated = energySystem.winter_week_gen
|
||||
|
||||
# spring_soc = energySystem.spring_week_soc
|
||||
# summer_soc = energySystem.summer_week_soc
|
||||
# autumn_soc = energySystem.autumn_week_soc
|
||||
# winter_soc = energySystem.winter_week_soc
|
||||
data[pv_capacity][ess_capacity] = annual_data
|
||||
return data
|
||||
|
||||
|
||||
# fig, ax1 = plt.subplots()
|
||||
|
||||
# plt.plot(spring_week_time, spring_pv_generated, label = 'pv generation')
|
||||
# plt.plot(spring_week_time, spring_consume_data, label = 'factory consume')
|
||||
# plt.ylabel('Power / kW')
|
||||
# plt.xlabel('15 min #')
|
||||
# plt.title(f'ess: {energySystem.ess.capacity/1000 } MWh pv: {energySystem.pv.capacity/1000 } MW spring week generate condition')
|
||||
# plt.legend()
|
||||
# plt.savefig(f'plots/{energySystem.ess.capacity}-{energySystem.pv.capacity}-spring.png')
|
||||
# plt.close()
|
||||
|
||||
# plt.plot(summer_week_time, summer_pv_generated, label = 'pv generation')
|
||||
# plt.plot(summer_week_time, summer_consume_data, label = 'factory consume')
|
||||
# plt.ylabel('Power / kW')
|
||||
# plt.xlabel('15 min #')
|
||||
# plt.title(f'ess: {energySystem.ess.capacity/1000 } MWh pv: {energySystem.pv.capacity/1000 } MW summer week generate condition')
|
||||
# plt.legend()
|
||||
# plt.savefig(f'plots/{energySystem.ess.capacity}-{energySystem.pv.capacity}-summer.png')
|
||||
# plt.close()
|
||||
|
||||
# plt.plot(autumn_week_time, autumn_pv_generated, label = 'pv generation')
|
||||
# plt.plot(autumn_week_time, autumn_consume_data, label = 'factory consume')
|
||||
# plt.ylabel('Power / kW')
|
||||
# plt.xlabel('15 min #')
|
||||
# plt.title(f'ess: {energySystem.ess.capacity/1000 } MWh pv: {energySystem.pv.capacity/1000 } MW autumn week generate condition')
|
||||
# plt.legend()
|
||||
# plt.savefig(f'plots/{energySystem.ess.capacity}-{energySystem.pv.capacity}-autumn.png')
|
||||
# plt.close()
|
||||
|
||||
# plt.plot(winter_week_time, winter_pv_generated, label = 'pv generation')
|
||||
# plt.plot(winter_week_time, winter_consume_data, label = 'factory consume')
|
||||
# plt.ylabel('Power / kW')
|
||||
# plt.xlabel('15 min #')
|
||||
# plt.title(f'ess: {energySystem.ess.capacity/1000 } MWh pv: {energySystem.pv.capacity/1000 } MW winter week generate condition')
|
||||
# plt.legend()
|
||||
# plt.savefig(f'plots/{energySystem.ess.capacity}-{energySystem.pv.capacity}-winter.png')
|
||||
# plt.close()
|
||||
|
||||
# plt.figure();
|
||||
# plt.plot(pv_generated)
|
||||
# plt.xlabel('day #')
|
||||
# plt.ylabel('Electricity kWh')
|
||||
# plt.title(f'PV generated pv cap:{pv_capacity}, ess cap:{ess_capacity}')
|
||||
# plt.savefig(f'plots/pv/{pv_capacity}-{ess_capacity}.png')
|
||||
# plt.close()
|
||||
# In[102]:
|
||||
|
||||
|
||||
# plt.show()
|
||||
annual_pv_gen = collapse_months_csv_data(months_csv_data, "pv_generate", pv_capacities, ess_capacities)
|
||||
annual_time = collapse_months_csv_data(months_csv_data, "time", pv_capacities, ess_capacities)
|
||||
annual_buy_price = collapse_months_csv_data(months_csv_data, "buy_price",pv_capacities, ess_capacities)
|
||||
annual_sell_price = collapse_months_csv_data(months_csv_data, "sell_price", pv_capacities, ess_capacities)
|
||||
annual_factory_demand = collapse_months_csv_data(months_csv_data, "factory_demand", pv_capacities, ess_capacities)
|
||||
annual_grid_need_power = collapse_months_csv_data(months_csv_data, "grid_need_power", pv_capacities, ess_capacities)
|
||||
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
for pv_capacity in pv_capacities:
|
||||
for ess_capacity in ess_capacities:
|
||||
with open(f'data/annual_data-pv-{pv_capacity}-ess-{ess_capacity}.csv', 'w') as f:
|
||||
f.write("date, time,pv_generate (kW),factory_demand (kW),buy_price (USD/MWh),sell_price (USD/MWh),grid_need_power (kW)\n")
|
||||
start_date = datetime(2023, 1, 1, 0, 0, 0)
|
||||
for i in range(len(annual_time[pv_capacity][ess_capacity])):
|
||||
current_date = start_date + timedelta(hours=i)
|
||||
formate_date = current_date.strftime("%Y-%m-%d")
|
||||
f.write(f"{formate_date},{annual_time[pv_capacity][ess_capacity][i]},{int(annual_pv_gen[pv_capacity][ess_capacity][i])},{int(annual_factory_demand[pv_capacity][ess_capacity][i])},{int(annual_buy_price[pv_capacity][ess_capacity][i]*1000)},{int(annual_sell_price[pv_capacity][ess_capacity][i]*1000)},{int(annual_grid_need_power[pv_capacity][ess_capacity][i])} \n")
|
||||
|
||||
|
||||
|
||||
|
||||
# results = results.astype(float)
|
||||
|
||||
|
||||
# pv = pv_config(capacity=100000,cost_per_kW=200,lifetime=25,loss=0.95)
|
||||
# ess = ess_config(capacity=100000,cost_per_kW=300,lifetime=25,loss=0.95,charge_power=100000,discharge_power=100000)
|
||||
# grid = grid_config(price_schedule=price_schedule, capacity=5000, grid_loss=0.95, sell_price=0.4)
|
||||
# grid = grid_config(capacity=50000, grid_loss=0.95, sell_price=0.4)
|
||||
|
||||
|
||||
# print(benefit)
|
||||
|
||||
|
||||
# In[20]:
|
||||
# In[96]:
|
||||
|
||||
|
||||
def save_data(data, filename):
|
||||
@@ -262,83 +547,25 @@ def save_data(data, filename):
|
||||
data.to_json(filename + '.json')
|
||||
|
||||
|
||||
# In[21]:
|
||||
# In[97]:
|
||||
|
||||
|
||||
import matplotlib.ticker as ticker
|
||||
|
||||
if not os.path.isdir('data'):
|
||||
os.makedirs('data')
|
||||
|
||||
save_data(results, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-results')
|
||||
save_data(costs, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-costs')
|
||||
save_data(overload_cnt, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-overload_cnt')
|
||||
df=results
|
||||
df = df.astype(float)
|
||||
df.index = df.index / 1000
|
||||
df.columns = df.columns / 1000
|
||||
min_value = df.min().min()
|
||||
max_value = df.max().max()
|
||||
max_scale = max(abs(min_value/1000), abs(max_value/1000))
|
||||
plt.figure(figsize=figure_size)
|
||||
cmap = sns.color_palette("coolwarm", as_cmap=True)
|
||||
ax = sns.heatmap(df/1000, fmt=".1f", cmap=cmap, vmin=-max_scale, vmax=max_scale, annot=annot_benefit)
|
||||
# ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%.1f'))
|
||||
plt.title(title_benefit)
|
||||
plt.gca().invert_yaxis()
|
||||
plt.xlabel('ESS Capacity (MWh)')
|
||||
plt.ylabel('PV Capacity (MW)')
|
||||
plt.savefig('plots/benefit.png')
|
||||
save_data(annual_result, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-results')
|
||||
save_data(annual_costs, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-costs')
|
||||
save_data(annual_overload, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-overload_cnt')
|
||||
|
||||
|
||||
# In[22]:
|
||||
# In[98]:
|
||||
|
||||
|
||||
df = costs
|
||||
df = df.astype(int)
|
||||
df.index = df.index / 1000
|
||||
df.columns = df.columns / 1000
|
||||
|
||||
plt.figure(figsize=figure_size)
|
||||
sns.heatmap(df/1000000, fmt=".1f", cmap='viridis', annot=annot_cost)
|
||||
plt.title(title_cost)
|
||||
plt.gca().invert_yaxis()
|
||||
plt.xlabel('ESS Capacity (MWh)')
|
||||
plt.ylabel('PV Capacity (MW)')
|
||||
plt.savefig('plots/costs.png')
|
||||
|
||||
# pv = pv_config(capacity=100000,cost_per_kW=200,lifetime=25,loss=0.95)
|
||||
# ess = ess_config(capacity=100000,cost_per_kW=300,lifetime=25,loss=0.95,charge_power=100000,discharge_power=100000)
|
||||
# grid = grid_config(price_schedule=price_schedule, capacity=5000, grid_loss=0.95, sell_price=0.4)
|
||||
# grid = grid_config(capacity=50000, grid_loss=0.95, sell_price=0.4)
|
||||
draw_results(annual_result, 'plots/test.png', 'test', False)
|
||||
|
||||
|
||||
# print(benefit)
|
||||
# In[99]:
|
||||
|
||||
|
||||
# In[23]:
|
||||
|
||||
|
||||
from matplotlib.colors import LinearSegmentedColormap
|
||||
df = overload_cnt
|
||||
df = df.astype(int)
|
||||
df.index = df.index / 1000
|
||||
df.columns = df.columns / 1000
|
||||
min_value = df.min().min()
|
||||
max_value = df.max().max()
|
||||
max_scale = max(abs(min_value/1000), abs(max_value/1000))
|
||||
|
||||
plt.figure(figsize=figure_size)
|
||||
cmap = LinearSegmentedColormap.from_list("", ["white", "blue"])
|
||||
ax = sns.heatmap(df/(4*24*365), fmt=".00%", cmap=cmap, vmin=0, vmax=1, annot=annot_unmet)
|
||||
cbar = ax.collections[0].colorbar
|
||||
cbar.set_ticks([0, 0.25, 0.5, 0.75, 1])
|
||||
cbar.set_ticklabels(['0%', '25%', '50%', '75%', '100%'])
|
||||
cbar.ax.yaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos: f'{x:.0%}'))
|
||||
|
||||
plt.title(title_unmet)
|
||||
plt.gca().invert_yaxis()
|
||||
plt.xlabel('ESS Capacity (MWh)')
|
||||
plt.ylabel('PV Capacity (MW)')
|
||||
plt.savefig('plots/unmet.png')
|
||||
draw_roi(annual_costs, annual_nettos, 'plots/annual_roi.png', title_roi, 365, annot_benefit, figure_size)
|
||||
|
||||
|
76
read_data.py
76
read_data.py
@@ -1,69 +1,47 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import csv
|
||||
import json
|
||||
|
||||
sunlight_file_name = 'lightintensity.xlsx'
|
||||
factory_demand_file_name = 'factory_power1.xlsx'
|
||||
electricity_price_data = 'electricity_price_data.csv'
|
||||
with open('config.json', 'r') as f:
|
||||
js_data = json.load(f)
|
||||
|
||||
df_sunlight = pd.read_excel(sunlight_file_name, header=None, names=['SunlightIntensity'])
|
||||
pv_yield_file_name = js_data["data_path"]["pv_yield"]
|
||||
print(pv_yield_file_name)
|
||||
# factory_demand_file_name = 'factory_power1.xlsx'
|
||||
factory_demand_file_name = js_data["data_path"]["demand"]
|
||||
print(factory_demand_file_name)
|
||||
electricity_price_data = js_data["data_path"]["buy"]
|
||||
print(electricity_price_data)
|
||||
electricity_price_data_sell = js_data["data_path"]["sell"]
|
||||
print(electricity_price_data_sell)
|
||||
|
||||
start_date = '2023-01-01 00:00:00' # 根据数据的实际开始日期调整
|
||||
hours = pd.date_range(start=start_date, periods=len(df_sunlight), freq='h')
|
||||
df_sunlight['Time'] = hours
|
||||
df_sunlight.set_index('Time', inplace=True)
|
||||
pv_df = pd.read_csv(pv_yield_file_name, index_col='Time', usecols=['Time', 'PV yield[kW/kWp]'])
|
||||
pv_df.index = pd.to_datetime(pv_df.index)
|
||||
|
||||
df_sunlight_resampled = df_sunlight.resample('15min').interpolate()
|
||||
df_power = pd.read_csv(factory_demand_file_name, index_col='Time', usecols=['Time', 'FactoryPower'])
|
||||
df_power.index = pd.to_datetime(df_power.index)
|
||||
df_combined = pv_df.join(df_power)
|
||||
|
||||
df_power = pd.read_excel(factory_demand_file_name,
|
||||
header=None,
|
||||
names=['FactoryPower'],
|
||||
dtype={'FactoryPower': float})
|
||||
times = pd.date_range(start=start_date, periods=len(df_power), freq='15min')
|
||||
df_power['Time'] = times
|
||||
df_power.set_index('Time',inplace=True)
|
||||
print(df_power.head())
|
||||
|
||||
df_combined = df_sunlight_resampled.join(df_power)
|
||||
|
||||
|
||||
df_combined.to_csv('combined_data.csv', index=True, index_label='Time')
|
||||
|
||||
def read_csv(file_path):
|
||||
return pd.read_csv(file_path, index_col='Time', usecols=['Time', 'ElectricityPrice'])
|
||||
|
||||
# price_data = np.random.uniform(0.3, 0.3, len(times))
|
||||
|
||||
# 创建DataFrame
|
||||
price_df = read_csv(electricity_price_data)
|
||||
price_df = pd.read_csv(electricity_price_data, index_col='Time', usecols=['Time', 'ElectricityBuy'])
|
||||
price_df.index = pd.to_datetime(price_df.index)
|
||||
price_df = price_df.reindex(df_combined.index)
|
||||
|
||||
# price_df.set_index('Time', inplace=True)
|
||||
|
||||
# 保存到CSV文件
|
||||
# price_df.to_csv('electricity_price_data.csv', index=True)
|
||||
print("price____")
|
||||
print(price_df.index)
|
||||
print("df_combined____")
|
||||
print(df_combined.index)
|
||||
|
||||
print("Electricity price data generated and saved.")
|
||||
|
||||
|
||||
df_combined2 = df_combined.join(price_df)
|
||||
print(df_combined2.head())
|
||||
# 保存结果
|
||||
|
||||
sell_df = pd.read_csv(electricity_price_data_sell, index_col='Time', usecols=['Time', 'ElectricitySell'])
|
||||
sell_df.index = pd.to_datetime(sell_df.index)
|
||||
sell_df = sell_df.reindex(df_combined.index)
|
||||
df_combined3 = df_combined2.join(sell_df)
|
||||
|
||||
with open('combined_data.csv', 'w', newline='') as file:
|
||||
writer = csv.writer(file)
|
||||
writer.writerow(['time', 'sunlight', 'demand','price'])
|
||||
writer.writerow(['time', 'PV yield[kW/kWp]', 'demand','buy', 'sell'])
|
||||
cnt = 0
|
||||
for index, row in df_combined2.iterrows():
|
||||
for index, row in df_combined3.iterrows():
|
||||
time_formatted = index.strftime('%H:%M')
|
||||
writer.writerow([time_formatted, row['SunlightIntensity'], row['FactoryPower'],row['ElectricityPrice']])
|
||||
writer.writerow([time_formatted, row['PV yield[kW/kWp]'], row['FactoryPower'],row['ElectricityBuy'], row['ElectricitySell']])
|
||||
|
||||
print('The file is written to combined_data.csv')
|
||||
|
||||
# combined_data.to_csv('updated_simulation_with_prices.csv', index=False)
|
||||
|
||||
print("Simulation data with electricity prices has been updated and saved.")
|
35041
read_data/Berlin.csv
Normal file
35041
read_data/Berlin.csv
Normal file
File diff suppressed because it is too large
Load Diff
35041
read_data/Cambodge.csv
Normal file
35041
read_data/Cambodge.csv
Normal file
File diff suppressed because it is too large
Load Diff
35041
read_data/Marcedonia.csv
Normal file
35041
read_data/Marcedonia.csv
Normal file
File diff suppressed because it is too large
Load Diff
35041
read_data/Riyahd.csv
Normal file
35041
read_data/Riyahd.csv
Normal file
File diff suppressed because it is too large
Load Diff
35041
read_data/Serbia.csv
Normal file
35041
read_data/Serbia.csv
Normal file
File diff suppressed because it is too large
Load Diff
372
read_data/convert_data.ipynb
Normal file
372
read_data/convert_data.ipynb
Normal file
@@ -0,0 +1,372 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 85,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"import os\n",
|
||||
"import csv"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 86,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def read_csv(filename):\n",
|
||||
" skip_rows = list(range(1, 17))\n",
|
||||
" data = pd.read_csv(filename, sep=';', skiprows=skip_rows)\n",
|
||||
" return data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 87,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/tmp/ipykernel_3075037/3659192646.py:3: DtypeWarning: Columns (32,33,35) have mixed types. Specify dtype option on import or set low_memory=False.\n",
|
||||
" data = pd.read_csv(filename, sep=';', skiprows=skip_rows)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Index(['Time', 'Irradiance onto horizontal plane ',\n",
|
||||
" 'Diffuse Irradiation onto Horizontal Plane ', 'Outside Temperature ',\n",
|
||||
" 'Module Area 1: Height of Sun ',\n",
|
||||
" 'Module Area 1: Irradiance onto tilted surface ',\n",
|
||||
" 'Module Area 1: Module Temperature ', 'Grid Export ',\n",
|
||||
" 'Energy from Grid ', 'Global radiation - horizontal ',\n",
|
||||
" 'Deviation from standard spectrum ', 'Ground Reflection (Albedo) ',\n",
|
||||
" 'Orientation and inclination of the module surface ', 'Shading ',\n",
|
||||
" 'Reflection on the Module Surface ',\n",
|
||||
" 'Irradiance on the rear side of the module ',\n",
|
||||
" 'Global Radiation at the Module ',\n",
|
||||
" 'Module Area 1: Reflection on the Module Surface ',\n",
|
||||
" 'Module Area 1: Global Radiation at the Module ',\n",
|
||||
" 'Global PV Radiation ', 'Bifaciality ', 'Soiling ',\n",
|
||||
" 'STC Conversion (Rated Efficiency of Module) ', 'Rated PV Energy ',\n",
|
||||
" 'Low-light performance ', 'Module-specific Partial Shading ',\n",
|
||||
" 'Deviation from the nominal module temperature ', 'Diodes ',\n",
|
||||
" 'Mismatch (Manufacturer Information) ',\n",
|
||||
" 'Mismatch (Configuration/Shading) ',\n",
|
||||
" 'Power optimizer (DC conversion/clipping) ',\n",
|
||||
" 'PV Energy (DC) without inverter clipping ',\n",
|
||||
" 'Failing to reach the DC start output ',\n",
|
||||
" 'Clipping on account of the MPP Voltage Range ',\n",
|
||||
" 'Clipping on account of the max. DC Current ',\n",
|
||||
" 'Clipping on account of the max. DC Power ',\n",
|
||||
" 'Clipping on account of the max. AC Power/cos phi ', 'MPP Matching ',\n",
|
||||
" 'PV energy (DC) ',\n",
|
||||
" 'Inverter 1 - MPP 1 - to Module Area 1: PV energy (DC) ',\n",
|
||||
" 'Inverter 1 - MPP 2 - to Module Area 1: PV energy (DC) ',\n",
|
||||
" 'Inverter 1 - MPP 3 - to Module Area 1: PV energy (DC) ',\n",
|
||||
" 'Inverter 1 - MPP 4 - to Module Area 1: PV energy (DC) ',\n",
|
||||
" 'Inverter 1 - MPP 5 - to Module Area 1: PV energy (DC) ',\n",
|
||||
" 'Inverter 1 - MPP 6 - to Module Area 1: PV energy (DC) ',\n",
|
||||
" 'Inverter 2 - MPP 1 - to Module Area 1: PV energy (DC) ',\n",
|
||||
" 'Inverter 2 - MPP 2 - to Module Area 1: PV energy (DC) ',\n",
|
||||
" 'Energy at the Inverter Input ',\n",
|
||||
" 'Input voltage deviates from rated voltage ', 'DC/AC Conversion ',\n",
|
||||
" 'Own Consumption (Standby or Night) ', 'Total Cable Losses ',\n",
|
||||
" 'PV energy (AC) minus standby use ', 'Feed-in energy ',\n",
|
||||
" 'Inverter 1 to Module Area 1: Own Consumption (Standby or Night) ',\n",
|
||||
" 'Inverter 1 to Module Area 1: PV energy (AC) minus standby use ',\n",
|
||||
" 'Inverter 2 to Module Area 1: Own Consumption (Standby or Night) ',\n",
|
||||
" 'Inverter 2 to Module Area 1: PV energy (AC) minus standby use ',\n",
|
||||
" 'Unnamed: 58'],\n",
|
||||
" dtype='object')"
|
||||
]
|
||||
},
|
||||
"execution_count": 87,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"\n",
|
||||
"file_name = 'Riyahd_raw.csv'\n",
|
||||
"df = read_csv(file_name)\n",
|
||||
"df.columns"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 88,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remain_column = ['Time','PV energy (AC) minus standby use ']\n",
|
||||
"energy_row_name = remain_column[1]\n",
|
||||
"\n",
|
||||
"df = df[remain_column]\n",
|
||||
"df[energy_row_name] = df[energy_row_name].str.replace(',','.').astype(float)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 89,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"770594.226863267"
|
||||
]
|
||||
},
|
||||
"execution_count": 89,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"sum_energy = df[energy_row_name].sum()\n",
|
||||
"sum_energy"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 90,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"1975.882632982736"
|
||||
]
|
||||
},
|
||||
"execution_count": 90,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"sum_energy / 390"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 91,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"group_size = 15\n",
|
||||
"df['group_id'] = df.index // group_size\n",
|
||||
"\n",
|
||||
"sums = df.groupby('group_id')[energy_row_name].sum()\n",
|
||||
"sums_df = sums.reset_index(drop=True).to_frame(name = 'Energy')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 92,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"<bound method NDFrame.head of Energy\n",
|
||||
"0 0.0\n",
|
||||
"1 0.0\n",
|
||||
"2 0.0\n",
|
||||
"3 0.0\n",
|
||||
"4 0.0\n",
|
||||
"... ...\n",
|
||||
"35035 0.0\n",
|
||||
"35036 0.0\n",
|
||||
"35037 0.0\n",
|
||||
"35038 0.0\n",
|
||||
"35039 0.0\n",
|
||||
"\n",
|
||||
"[35040 rows x 1 columns]>"
|
||||
]
|
||||
},
|
||||
"execution_count": 92,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"sums_df.head"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 93,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" Time\n",
|
||||
"0 2023-01-01 00:00:00\n",
|
||||
"1 2023-01-01 00:15:00\n",
|
||||
"2 2023-01-01 00:30:00\n",
|
||||
"3 2023-01-01 00:45:00\n",
|
||||
"4 2023-01-01 01:00:00\n",
|
||||
" Time\n",
|
||||
"35035 2023-12-31 22:45:00\n",
|
||||
"35036 2023-12-31 23:00:00\n",
|
||||
"35037 2023-12-31 23:15:00\n",
|
||||
"35038 2023-12-31 23:30:00\n",
|
||||
"35039 2023-12-31 23:45:00\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"\n",
|
||||
"start_date = '2023-01-01'\n",
|
||||
"end_date = '2023-12-31'\n",
|
||||
"\n",
|
||||
"# 生成每天的15分钟间隔时间\n",
|
||||
"all_dates = pd.date_range(start=start_date, end=end_date, freq='D')\n",
|
||||
"all_times = pd.timedelta_range(start='0 min', end='1435 min', freq='15 min')\n",
|
||||
"\n",
|
||||
"# 生成完整的时间标签\n",
|
||||
"date_times = [pd.Timestamp(date) + time for date in all_dates for time in all_times]\n",
|
||||
"\n",
|
||||
"# 创建DataFrame\n",
|
||||
"time_frame = pd.DataFrame({\n",
|
||||
" 'Time': date_times\n",
|
||||
"})\n",
|
||||
"\n",
|
||||
"# 查看生成的DataFrame\n",
|
||||
"print(time_frame.head())\n",
|
||||
"print(time_frame.tail())\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 94,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"(35040, 1)\n",
|
||||
"(35040, 1)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(sums_df.shape)\n",
|
||||
"print(time_frame.shape)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 95,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# sums_df['Time'] = time_frame['Time']\n",
|
||||
"sums_df = pd.concat([time_frame, sums_df], axis=1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 96,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" Energy\n",
|
||||
"Time \n",
|
||||
"2023-01-01 00:00:00 0.0\n",
|
||||
"2023-01-01 00:15:00 0.0\n",
|
||||
"2023-01-01 00:30:00 0.0\n",
|
||||
"2023-01-01 00:45:00 0.0\n",
|
||||
"2023-01-01 01:00:00 0.0\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"sums_df.set_index('Time', inplace=True)\n",
|
||||
"print(sums_df.head())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 97,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"max_value = sums_df['Energy'].max()\n",
|
||||
"sums_df['Energy'] = sums_df['Energy'] / max_value\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 98,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def save_csv(df, filename, columns):\n",
|
||||
" tmp_df = df.copy()\n",
|
||||
" tmp_df[columns[1]] = tmp_df[columns[1]].round(4)\n",
|
||||
" with open(filename, 'w', newline='') as file:\n",
|
||||
" writer = csv.writer(file)\n",
|
||||
" writer.writerow(columns)\n",
|
||||
" for index, row in tmp_df.iterrows():\n",
|
||||
" time_formatted = index.strftime('%H:%M')\n",
|
||||
" writer.writerow([time_formatted, row[columns[1]]])\n",
|
||||
" \n",
|
||||
" print(f'The file is written to {filename}')\n",
|
||||
" \n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 99,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"The file is written to Riyahd.csv\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"save_csv(sums_df, 'Riyahd.csv', ['Time', 'Energy'])"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "pv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
79
read_data/convert_data.py
Normal file
79
read_data/convert_data.py
Normal file
@@ -0,0 +1,79 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import os
|
||||
import csv
|
||||
|
||||
def generate_min_df(mins = 15):
|
||||
end = 60/mins * 24
|
||||
start_date = '2023-01-01'
|
||||
end_date = '2023-12-31'
|
||||
|
||||
all_dates = pd.date_range(start=start_date, end=end_date, freq='D')
|
||||
all_times = pd.timedelta_range(start='0 min', end=f'1435 min', freq=f'{mins} min')
|
||||
|
||||
date_times = [pd.Timestamp(date) + time for date in all_dates for time in all_times]
|
||||
|
||||
time_frame = pd.DataFrame({
|
||||
'Time': date_times
|
||||
})
|
||||
return time_frame
|
||||
|
||||
def save_csv(df, filename, columns):
|
||||
with open(filename, 'w', newline='') as file:
|
||||
writer = csv.writer(file)
|
||||
writer.writerow(['Time', 'PV yield[kW/kWp]'])
|
||||
for index, row in df.iterrows():
|
||||
time_formatted = index.strftime('%H:%M')
|
||||
writer.writerow([time_formatted, row[columns[1]]])
|
||||
|
||||
print(f'The file is written to {filename}')
|
||||
|
||||
def read_csv(filename):
|
||||
skip_rows = list(range(1, 17))
|
||||
data = pd.read_csv(filename, sep=';', skiprows=skip_rows)
|
||||
return data
|
||||
|
||||
def process(file_name):
|
||||
df = read_csv(file_name)
|
||||
city = file_name.split('_')[0]
|
||||
|
||||
remain_column = ['Time','PV energy (AC) minus standby use ']
|
||||
energy_row_name = remain_column[1]
|
||||
|
||||
df = df[remain_column]
|
||||
df[energy_row_name] = df[energy_row_name].str.replace(',','.').astype(float)
|
||||
|
||||
sum_energy = df[energy_row_name].sum()
|
||||
group_size = 15
|
||||
df['group_id'] = df.index // group_size
|
||||
|
||||
sums = df.groupby('group_id')[energy_row_name].sum()
|
||||
sums_df = sums.reset_index(drop=True).to_frame(name = 'Energy')
|
||||
|
||||
pv_energy_column_name = 'PV yield[kW/kWp]'
|
||||
sums_df = sums_df.rename(columns={'Energy': pv_energy_column_name})
|
||||
|
||||
time_frame = generate_min_df(15)
|
||||
sums_df = pd.concat([time_frame, sums_df], axis=1)
|
||||
# sums_df.set_index('Time', inplace=True)
|
||||
# max_value = sums_df[pv_energy_column_name].max()
|
||||
sums_df[pv_energy_column_name] = sums_df[pv_energy_column_name] / 390.
|
||||
sums_df[pv_energy_column_name] = sums_df[pv_energy_column_name].round(4)
|
||||
sums_df[pv_energy_column_name].replace(0.0, -0.0)
|
||||
|
||||
sums_df.to_csv(f'{city}.csv')
|
||||
# save_csv(sums_df, f'{city}.csv', ['Time', 'Energy'])
|
||||
|
||||
if __name__ == '__main__':
|
||||
city_list = ['Riyahd', 'Cambodge', 'Berlin', 'Serbia']
|
||||
for city in city_list:
|
||||
print(f'Processing {city}')
|
||||
file_name = f'{city}_raw.csv'
|
||||
process(file_name)
|
||||
print(f'Processing {city} is done\n')
|
||||
|
35041
read_data/electricity_price_data.csv
Normal file
35041
read_data/electricity_price_data.csv
Normal file
File diff suppressed because it is too large
Load Diff
35041
read_data/electricity_price_data_sell.csv
Normal file
35041
read_data/electricity_price_data_sell.csv
Normal file
File diff suppressed because it is too large
Load Diff
35041
read_data/factory_power1.csv
Normal file
35041
read_data/factory_power1.csv
Normal file
File diff suppressed because it is too large
Load Diff
16
xlsx2csv.py
Normal file
16
xlsx2csv.py
Normal file
@@ -0,0 +1,16 @@
|
||||
import pandas as pd
|
||||
|
||||
excel_file = 'factory_power1.xlsx'
|
||||
sheet_name = 'Sheet1'
|
||||
|
||||
df = pd.read_excel(excel_file, sheet_name=sheet_name)
|
||||
|
||||
start_date = '2023-01-01'
|
||||
df_power = pd.read_excel(excel_file,
|
||||
header=None,
|
||||
names=['FactoryPower'],
|
||||
dtype={'FactoryPower': float})
|
||||
times = pd.date_range(start=start_date, periods=len(df_power), freq='15min')
|
||||
df_power['Time'] = times
|
||||
df_power = df_power[['Time', 'FactoryPower']]
|
||||
df_power.to_csv('factory_power1.csv', index=True)
|
Reference in New Issue
Block a user