add a datsets option to specify the datset you want, add a plot script

This commit is contained in:
Mhrooz 2024-08-28 17:11:17 +02:00
parent aa4b38a0cc
commit 551abc31f3
2 changed files with 52 additions and 3 deletions

48
analyze.py Normal file
View File

@ -0,0 +1,48 @@
import csv
import matplotlib.pyplot as plt
from scipy import stats
import pandas as pd
def plot(l):
labels = ['0-10k', '10k-20k,', '20k-30k', '30k-40k', '40k-50k', '50k-60k', '60k-70k']
l = [i/15625 for i in l]
l = l[:7]
plt.bar(labels, l)
plt.savefig('plot.png')
def analyse(filename):
l = [0 for i in range(10)]
scores = []
count = 0
best_value = -1
with open(filename) as file:
reader = csv.reader(file)
header = next(reader)
data = [row for row in reader]
for row in data:
score = row[0]
best_value = max(best_value, float(score))
# print(score)
ind = float(score) // 10000
ind = int(ind)
l[ind] += 1
acc = row[1]
index = row[2]
datas = list(zip(score, acc, index))
scores.append(score)
print(max(scores))
results = pd.DataFrame(datas, columns=['swap_score', 'valid_acc', 'index'])
print(results['swap_score'].max())
print(best_value)
plot(l)
return stats.spearmanr(results.swap_score, results.valid_acc)[0]
if __name__ == '__main__':
print(analyse('output/swap_results.csv'))

View File

@ -39,6 +39,7 @@ parser.add_argument('--seed', default=0, type=int, help='random seed')
parser.add_argument('--device', default="cuda", type=str, nargs='?', help='setup device (cpu, mps or cuda)')
parser.add_argument('--repeats', default=32, type=int, nargs='?', help='times of calculating the training-free metric')
parser.add_argument('--input_samples', default=16, type=int, nargs='?', help='input batch size for training-free metric')
parser.add_argument('--datasets', default='cifar10', type=str, help='input datasets')
args = parser.parse_args()
@ -48,7 +49,7 @@ if __name__ == "__main__":
# arch_info = pd.read_csv(args.data_path+'/DARTS_archs_CIFAR10.csv', names=['genotype', 'valid_acc'], sep=',')
train_data, _, _ = get_datasets('cifar10', args.data_path, (args.input_samples, 3, 32, 32), -1)
train_data, _, _ = get_datasets(args.datasets, args.data_path, (args.input_samples, 3, 32, 32), -1)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.input_samples, num_workers=0, pin_memory=True)
loader = iter(train_loader)
inputs, _ = next(loader)
@ -63,11 +64,11 @@ if __name__ == "__main__":
# print(f'Evaluating network: {index}')
print(f'Evaluating network: {ind}')
config = api.get_net_config(ind, 'cifar10')
config = api.get_net_config(ind, args.datasets)
network = get_cell_based_tiny_net(config)
# nas_results = api.query_by_index(i, 'cifar10')
# acc = nas_results[111].get_eval('ori-test')
nas_results = api.get_more_info(ind, 'cifar10', None, hp=200, is_random=False)
nas_results = api.get_more_info(ind, args.datasets, None, hp=200, is_random=False)
acc = nas_results['test-accuracy']
# print(type(network))