Compare commits

...

2 Commits

Author SHA1 Message Date
a7a6906a6d add format plot codes 2024-08-29 09:36:33 +02:00
c80cfb8cac add parser 2024-08-29 09:20:29 +02:00

View File

@ -2,13 +2,23 @@ import csv
import matplotlib.pyplot as plt
from scipy import stats
import pandas as pd
import argparse
def plot(l):
def plot(l,filename):
lenth = len(l)
threshold = [0, 10000, 20000, 30000, 40000, 50000, 60000, 70000]
labels = ['0-10k', '10k-20k,', '20k-30k', '30k-40k', '40k-50k', '50k-60k', '60k-70k']
l = [i/15625 for i in l]
l = l[:7]
datasets = filename.split('_')[-1].split('.')[0]
plt.figure(figsize=(8, 6))
plt.subplots_adjust(top=0.85)
plt.ylim(0,0.3)
plt.title('Distribution of Swap Scores in ' + datasets)
plt.bar(labels, l)
plt.savefig('plot.png')
for i, v in enumerate(l):
plt.text(i, v + 0.01, str(round(v, 2)), ha='center', va='bottom')
plt.savefig(filename)
def analyse(filename):
l = [0 for i in range(10)]
@ -35,11 +45,16 @@ def analyse(filename):
results = pd.DataFrame(datas, columns=['swap_score', 'valid_acc', 'index'])
print(results['swap_score'].max())
print(best_value)
plot(l)
plot(l, filename + '.png')
return stats.spearmanr(results.swap_score, results.valid_acc)[0]
if __name__ == '__main__':
print(analyse('output/swap_results.csv'))
parser = argparse.ArgumentParser()
parser.add_argument('--filename', type=str, help='Filename to analyze', default='swap_results.csv')
args = parser.parse_args()
print(analyse('output' + '/' + args.filename))