xautodl/NAS-Bench-102.md

201 lines
11 KiB
Markdown
Raw Normal View History

2019-12-23 07:06:14 +01:00
# [NAS-BENCH-102: Extending the Scope of Reproducible Neural Architecture Search](https://openreview.net/forum?id=HJxyZkBKDr)
2019-12-20 10:41:49 +01:00
We propose an algorithm-agnostic NAS benchmark (NAS-Bench-102) with a fixed search space, which provides a unified benchmark for almost any up-to-date NAS algorithms.
2019-12-23 11:29:03 +01:00
The design of our search space is inspired by that used in the most popular cell-based searching algorithms, where a cell is represented as a directed acyclic graph.
2019-12-20 10:41:49 +01:00
Each edge here is associated with an operation selected from a predefined operation set.
For it to be applicable for all NAS algorithms, the search space defined in NAS-Bench-102 includes 4 nodes and 5 associated operation options, which generates 15,625 neural cell candidates in total.
In this Markdown file, we provide:
2020-01-10 07:26:37 +01:00
- [How to Use NAS-Bench-102](#how-to-use-nas-bench-102)
- [Instruction to re-generate NAS-Bench-102](#instruction-to-re-generate-nas-bench-102)
- [10 NAS algorithms evaluated in our paper](#to-reproduce-10-baseline-nas-algorithms-in-nas-bench-102)
2019-12-20 10:41:49 +01:00
Note: please use `PyTorch >= 1.2.0` and `Python >= 3.6.0`.
Simply type `pip install nas-bench-102` to install our api.
If you have any questions or issues, please post it at [here](https://github.com/D-X-Y/NAS-Projects/issues) or email me.
2019-12-21 01:28:41 +01:00
### Preparation and Download
2019-12-23 01:19:09 +01:00
The benchmark file of NAS-Bench-102 can be downloaded from [Google Drive](https://drive.google.com/open?id=1SKW0Cu0u8-gb18zDpaAGi0f74UdXeGKs) or [Baidu-Wangpan (code:6u5d)](https://pan.baidu.com/s/1CiaNH6C12zuZf7q-Ilm09w).
2019-12-21 01:28:41 +01:00
You can move it to anywhere you want and send its path to our API for initialization.
2019-12-26 13:29:36 +01:00
- v1.0: `NAS-Bench-102-v1_0-e61699.pth`, where `e61699` is the last six digits for this file. It contains all information except for the trained weights of each trial.
- v1.0: The full data of each architecture can be download from [Google Drive](https://drive.google.com/open?id=1X2i-JXaElsnVLuGgM4tP-yNwtsspXgdQ) (about 226GB). This compressed folder has 15625 files containing the the trained weights.
2020-01-02 04:35:58 +01:00
- v1.0: Checkpoints for 3 runs of each baseline NAS algorithm are provided in [Google Drive](https://drive.google.com/open?id=1eAgLZQAViP3r6dA0_ZOOGG9zPLXhGwXi).
2019-12-21 01:13:08 +01:00
2019-12-23 01:19:09 +01:00
The training and evaluation data used in NAS-Bench-102 can be downloaded from [Google Drive](https://drive.google.com/open?id=1L0Lzq8rWpZLPfiQGd6QR8q5xLV88emU7) or [Baidu-Wangpan (code:4fg7)](https://pan.baidu.com/s/1XAzavPKq3zcat1yBA1L2tQ).
2019-12-21 01:28:41 +01:00
It is recommended to put these data into `$TORCH_HOME` (`~/.torch/` by default). If you want to generate NAS-Bench-102 or similar NAS datasets or training models by yourself, you need these data.
2019-12-21 01:13:08 +01:00
2019-12-20 10:41:49 +01:00
## How to Use NAS-Bench-102
1. Creating an API instance from a file:
```
2019-12-28 05:42:36 +01:00
from nas_102_api import NASBench102API as API
api = API('$path_to_meta_nas_bench_file')
api = API('NAS-Bench-102-v1_0-e61699.pth')
api = API('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-102-v1_0-e61699.pth'))
2019-12-20 10:41:49 +01:00
```
2. Show the number of architectures `len(api)` and each architecture `api[i]`:
```
num = len(api)
for i, arch_str in enumerate(api):
print ('{:5d}/{:5d} : {:}'.format(i, len(api), arch_str))
```
3. Show the results of all trials for a single architecture:
```
# show all information for a specific architecture
api.show(1)
api.show(2)
# show the mean loss and accuracy of an architecture
2019-12-28 05:42:36 +01:00
info = api.query_meta_info_by_index(1) # This is an instance of `ArchResults`
res_metrics = info.get_metrics('cifar10', 'train') # This is a dict with metric names as keys
cost_metrics = info.get_comput_costs('cifar100') # This is a dict with metric names as keys, e.g., flops, params, latency
2019-12-20 10:41:49 +01:00
# get the detailed information
2019-12-29 10:17:26 +01:00
results = api.query_by_index(1, 'cifar100') # a dict of all trials for 1st net on cifar100, where the key is the seed
2019-12-20 10:41:49 +01:00
print ('There are {:} trials for this architecture [{:}] on cifar100'.format(len(results), api[1]))
print ('Latency : {:}'.format(results[0].get_latency()))
print ('Train Info : {:}'.format(results[0].get_train()))
print ('Valid Info : {:}'.format(results[0].get_eval('x-valid')))
print ('Test Info : {:}'.format(results[0].get_eval('x-test')))
# for the metric after a specific epoch
print ('Train Info [10-th epoch] : {:}'.format(results[0].get_train(10)))
```
4. Query the index of an architecture by string
```
index = api.query_index_by_arch('|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|')
api.show(index)
```
2019-12-21 01:13:08 +01:00
5. For other usages, please see `lib/nas_102_api/api.py`
2019-12-20 10:41:49 +01:00
### Detailed Instruction
In `nas_102_api`, we define three classes: `NASBench102API`, `ArchResults`, `ResultsCount`.
`ResultsCount` maintains all information of a specific trial. One can instantiate ResultsCount and get the info via the following codes (`000157-FULL.pth` saves all information of all trials of 157-th architecture):
```
from nas_102_api import ResultsCount
xdata = torch.load('000157-FULL.pth')
odata = xdata['full']['all_results'][('cifar10-valid', 777)]
result = ResultsCount.create_from_state_dict( odata )
print(result) # print it
print(result.get_train()) # print the final training loss/accuracy/[optional:time-cost-of-a-training-epoch]
print(result.get_train(11)) # print the training info of the 11-th epoch
print(result.get_eval('x-valid')) # print the final evaluation info on the validation set
print(result.get_eval('x-valid', 11)) # print the info on the validation set of the 11-th epoch
print(result.get_latency()) # print the evaluation latency [in batch]
result.get_net_param() # the trained parameters of this trial
arch_config = result.get_config(CellStructure.str2structure) # create the network with params
net_config = dict2config(arch_config, None)
network = get_cell_based_tiny_net(net_config)
network.load_state_dict(result.get_net_param())
```
`ArchResults` maintains all information of all trials of an architecture. Please see the following usages:
```
from nas_102_api import ArchResults
xdata = torch.load('000157-FULL.pth')
archRes = ArchResults.create_from_state_dict(xdata['less']) # load trials trained with 12 epochs
archRes = ArchResults.create_from_state_dict(xdata['full']) # load trials trained with 200 epochs
print(archRes.arch_idx_str()) # print the index of this architecture
print(archRes.get_dataset_names()) # print the supported training data
print(archRes.get_comput_costs('cifar10-valid')) # print all computational info when training on cifar10-valid
print(archRes.get_metrics('cifar10-valid', 'x-valid', None, False)) # print the average loss/accuracy/time on all trials
print(archRes.get_metrics('cifar10-valid', 'x-valid', None, True)) # print loss/accuracy/time of a randomly selected trial
```
`NASBench102API` is the topest level api. Please see the following usages:
```
from nas_102_api import NASBench102API as API
2019-12-26 13:29:36 +01:00
api = API('NAS-Bench-102-v1_0-e61699.pth') # This will load all the information of NAS-Bench-102 except the trained weights
api = API('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-102-v1_0-e61699.pth')) # The same as the above line while I usually save NAS-Bench-102-v1_0-e61699.pth in ~/.torch/.
2019-12-21 01:13:08 +01:00
api.show(-1) # show info of all architectures
2019-12-26 13:29:36 +01:00
api.reload('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-BENCH-102-4-v1.0-archive'), 3) # This code will reload the information 3-th architecture with the trained weights
weights = api.get_net_param(3, 'cifar10', None) # Obtaining the weights of all trials for the 3-th architecture on cifar10. It will returns a dict, where the key is the seed and the value is the trained weights.
2019-12-20 10:41:49 +01:00
```
2019-12-21 01:13:08 +01:00
2019-12-20 10:41:49 +01:00
## Instruction to Re-Generate NAS-Bench-102
1. generate the meta file for NAS-Bench-102 using the following script, where `NAS-BENCH-102` indicates the name and `4` indicates the maximum number of nodes in a cell.
```
bash scripts-search/NAS-Bench-102/meta-gen.sh NAS-BENCH-102 4
```
2. train earch architecture on a single GPU (see commands in `output/NAS-BENCH-102-4/BENCH-102-N4.opt-full.script`, which is automatically generated by step-1).
```
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-models.sh 0 0 389 -1 '777 888 999'
```
This command will train 390 architectures (id from 0 to 389) using the following four kinds of splits with three random seeds (777, 888, 999).
| Dataset | Train | Eval |
|:---------------:|:-------------:|:------------:|
| CIFAR-10 | train | valid / test |
| CIFAR-10 | train + valid | test |
| CIFAR-100 | train | valid / test |
| ImageNet-16-120 | train | valid / test |
2020-01-09 12:26:23 +01:00
Note that the above `train`, `valid`, and `test` indicate the proposed splits in our NAS-Bench-102, and they might be different with the original splits.
2019-12-20 10:41:49 +01:00
3. calculate the latency, merge the results of all architectures, and simplify the results.
(see commands in `output/NAS-BENCH-102-4/meta-node-4.cal-script.txt` which is automatically generated by step-1).
```
OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0 python exps/NAS-Bench-102/statistics.py --mode cal --target_dir 000000-000389-C16-N5
```
4. merge all results into a single file for NAS-Bench-102-API.
```
OMP_NUM_THREADS=4 python exps/NAS-Bench-102/statistics.py --mode merge
```
This command will generate a single file `output/NAS-BENCH-102-4/simplifies/C16-N5-final-infos.pth` contains all the data for NAS-Bench-102.
This generated file will serve as the input for our NAS-Bench-102 API.
[option] train a single architecture on a single GPU.
```
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-a-net.sh resnet 16 5
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-a-net.sh '|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|' 16 5
```
2019-12-21 01:13:08 +01:00
2019-12-20 10:41:49 +01:00
## To Reproduce 10 Baseline NAS Algorithms in NAS-Bench-102
We have tried our best to implement each method. However, still, some algorithms might obtain non-optimal results since their hyper-parameters might not fit our NAS-Bench-102.
If researchers can provide better results with different hyper-parameters, we are happy to update results according to the new experimental results. We also welcome more NAS algorithms to test on our dataset and would include them accordingly.
2019-12-23 07:06:14 +01:00
**Note that** you need to prepare the training and test data as described in [Preparation and Download](#preparation-and-download)
2020-01-09 12:26:23 +01:00
- [1] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1`, where `cifar10` can be replaced with `cifar100` or `ImageNet16-120`.
2019-12-20 10:41:49 +01:00
- [2] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1`
- [3] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 -1`
- [4] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh cifar10 -1`
- [5] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/ENAS.sh cifar10 -1`
- [6] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/RANDOM-NAS.sh cifar10 -1`
- [7] `bash ./scripts-search/algos/R-EA.sh -1`
- [8] `bash ./scripts-search/algos/Random.sh -1`
- [9] `bash ./scripts-search/algos/REINFORCE.sh -1`
- [10] `bash ./scripts-search/algos/BOHB.sh -1`
# Citation
If you find that NAS-Bench-102 helps your research, please consider citing it:
```
@inproceedings{dong2020nasbench102,
title = {NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search},
author = {Dong, Xuanyi and Yang, Yi},
booktitle = {International Conference on Learning Representations (ICLR)},
url = {https://openreview.net/forum?id=HJxyZkBKDr},
year = {2020}
}
```