update for NAS-Bench-102

This commit is contained in:
D-X-Y 2019-12-20 20:41:49 +11:00
parent 6c5fe506d5
commit 69ca0860aa
13 changed files with 656 additions and 46 deletions

3
.gitignore vendored
View File

@ -112,3 +112,6 @@ logs
a.pth
cal-merge*.sh
GPU-*.sh
cal.sh
aaa
cx.sh

156
NAS-Bench-102.md Normal file
View File

@ -0,0 +1,156 @@
# NAS-BENCH-102: Extending the Scope of Reproducible Neural Architecture Search
We propose an algorithm-agnostic NAS benchmark (NAS-Bench-102) with a fixed search space, which provides a unified benchmark for almost any up-to-date NAS algorithms.
The design of our search space is inspired from that used in the most popular cell-based searching algorithms, where a cell is represented as a directed acyclic graph.
Each edge here is associated with an operation selected from a predefined operation set.
For it to be applicable for all NAS algorithms, the search space defined in NAS-Bench-102 includes 4 nodes and 5 associated operation options, which generates 15,625 neural cell candidates in total.
In this Markdown file, we provide:
- Detailed instruction to reproduce NAS-Bench-102.
- 10 NAS algorithms evaluated in our paper.
Note: please use `PyTorch >= 1.2.0` and `Python >= 3.6.0`.
## How to Use NAS-Bench-102
1. Creating an API instance from a file:
```
from nas_102_api import NASBench102API
api = NASBench102API('$path_to_meta_nas_bench_file')
api = NASBench102API('NAS-Bench-102-v1_0.pth')
```
2. Show the number of architectures `len(api)` and each architecture `api[i]`:
```
num = len(api)
for i, arch_str in enumerate(api):
print ('{:5d}/{:5d} : {:}'.format(i, len(api), arch_str))
```
3. Show the results of all trials for a single architecture:
```
# show all information for a specific architecture
api.show(1)
api.show(2)
# show the mean loss and accuracy of an architecture
info = api.query_meta_info_by_index(1)
loss, accuracy = info.get_metrics('cifar10', 'train')
flops, params, latency = info.get_comput_costs('cifar100')
# get the detailed information
results = api.query_by_index(1, 'cifar100')
print ('There are {:} trials for this architecture [{:}] on cifar100'.format(len(results), api[1]))
print ('Latency : {:}'.format(results[0].get_latency()))
print ('Train Info : {:}'.format(results[0].get_train()))
print ('Valid Info : {:}'.format(results[0].get_eval('x-valid')))
print ('Test Info : {:}'.format(results[0].get_eval('x-test')))
# for the metric after a specific epoch
print ('Train Info [10-th epoch] : {:}'.format(results[0].get_train(10)))
```
4. Query the index of an architecture by string
```
index = api.query_index_by_arch('|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|')
api.show(index)
```
5. For other usages, please see `lib/aa_nas_api/api.py`
### Detailed Instruction
In `nas_102_api`, we define three classes: `NASBench102API`, `ArchResults`, `ResultsCount`.
`ResultsCount` maintains all information of a specific trial. One can instantiate ResultsCount and get the info via the following codes (`000157-FULL.pth` saves all information of all trials of 157-th architecture):
```
from nas_102_api import ResultsCount
xdata = torch.load('000157-FULL.pth')
odata = xdata['full']['all_results'][('cifar10-valid', 777)]
result = ResultsCount.create_from_state_dict( odata )
print(result) # print it
print(result.get_train()) # print the final training loss/accuracy/[optional:time-cost-of-a-training-epoch]
print(result.get_train(11)) # print the training info of the 11-th epoch
print(result.get_eval('x-valid')) # print the final evaluation info on the validation set
print(result.get_eval('x-valid', 11)) # print the info on the validation set of the 11-th epoch
print(result.get_latency()) # print the evaluation latency [in batch]
result.get_net_param() # the trained parameters of this trial
arch_config = result.get_config(CellStructure.str2structure) # create the network with params
net_config = dict2config(arch_config, None)
network = get_cell_based_tiny_net(net_config)
network.load_state_dict(result.get_net_param())
```
`ArchResults` maintains all information of all trials of an architecture. Please see the following usages:
```
from nas_102_api import ArchResults
xdata = torch.load('000157-FULL.pth')
archRes = ArchResults.create_from_state_dict(xdata['less']) # load trials trained with 12 epochs
archRes = ArchResults.create_from_state_dict(xdata['full']) # load trials trained with 200 epochs
print(archRes.arch_idx_str()) # print the index of this architecture
print(archRes.get_dataset_names()) # print the supported training data
print(archRes.get_comput_costs('cifar10-valid')) # print all computational info when training on cifar10-valid
print(archRes.get_metrics('cifar10-valid', 'x-valid', None, False)) # print the average loss/accuracy/time on all trials
print(archRes.get_metrics('cifar10-valid', 'x-valid', None, True)) # print loss/accuracy/time of a randomly selected trial
```
`NASBench102API` is the topest level api. Please see the following usages:
```
from nas_102_api import NASBench102API as API
api = API('NAS-Bench-102-v1_0.pth')
```
## Instruction to Re-Generate NAS-Bench-102
1. generate the meta file for NAS-Bench-102 using the following script, where `NAS-BENCH-102` indicates the name and `4` indicates the maximum number of nodes in a cell.
```
bash scripts-search/NAS-Bench-102/meta-gen.sh NAS-BENCH-102 4
```
2. train earch architecture on a single GPU (see commands in `output/NAS-BENCH-102-4/BENCH-102-N4.opt-full.script`, which is automatically generated by step-1).
```
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-models.sh 0 0 389 -1 '777 888 999'
```
This command will train 390 architectures (id from 0 to 389) using the following four kinds of splits with three random seeds (777, 888, 999).
| Dataset | Train | Eval |
|:---------------:|:-------------:|:------------:|
| CIFAR-10 | train | valid / test |
| CIFAR-10 | train + valid | test |
| CIFAR-100 | train | valid / test |
| ImageNet-16-120 | train | valid / test |
3. calculate the latency, merge the results of all architectures, and simplify the results.
(see commands in `output/NAS-BENCH-102-4/meta-node-4.cal-script.txt` which is automatically generated by step-1).
```
OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0 python exps/NAS-Bench-102/statistics.py --mode cal --target_dir 000000-000389-C16-N5
```
4. merge all results into a single file for NAS-Bench-102-API.
```
OMP_NUM_THREADS=4 python exps/NAS-Bench-102/statistics.py --mode merge
```
This command will generate a single file `output/NAS-BENCH-102-4/simplifies/C16-N5-final-infos.pth` contains all the data for NAS-Bench-102.
This generated file will serve as the input for our NAS-Bench-102 API.
[option] train a single architecture on a single GPU.
```
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-a-net.sh resnet 16 5
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-a-net.sh '|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|' 16 5
```
## To Reproduce 10 Baseline NAS Algorithms in NAS-Bench-102
We have tried our best to implement each method. However, still, some algorithms might obtain non-optimal results since their hyper-parameters might not fit our NAS-Bench-102.
If researchers can provide better results with different hyper-parameters, we are happy to update results according to the new experimental results. We also welcome more NAS algorithms to test on our dataset and would include them accordingly.
- [1] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1`
- [2] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1`
- [3] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 -1`
- [4] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh cifar10 -1`
- [5] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/ENAS.sh cifar10 -1`
- [6] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/RANDOM-NAS.sh cifar10 -1`
- [7] `bash ./scripts-search/algos/R-EA.sh -1`
- [8] `bash ./scripts-search/algos/Random.sh -1`
- [9] `bash ./scripts-search/algos/REINFORCE.sh -1`
- [10] `bash ./scripts-search/algos/BOHB.sh -1`

View File

@ -6,7 +6,8 @@ More NAS resources can be found in [Awesome-NAS](https://github.com/D-X-Y/Awesom
- Network Pruning via Transformable Architecture Search, NeurIPS 2019
- One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019
- Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019
- 10 NAS algorithms for the neural topology in `exps/algos`
- NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search, ICLR 2020
- 10 NAS algorithms for the neural topology in `exps/algos` (see [NAS-Bench-102.md](https://github.com/D-X-Y/NAS-Projects/blob/master/NAS-Bench-102.md) for more details)
- Several typical classification models, e.g., ResNet and DenseNet (see [BASELINE.md](https://github.com/D-X-Y/NAS-Projects/blob/master/BASELINE.md))
@ -27,6 +28,10 @@ flop, param = get_model_infos(net, (1,3,32,32))
2. Different NAS-searched architectures are defined [here](https://github.com/D-X-Y/NAS-Projects/blob/master/lib/nas_infer_model/DXYs/genotypes.py).
## NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search
We build a new benchmark for neural architecture search, please see more details in [NAS-Bench-102.md](https://github.com/D-X-Y/NAS-Projects/blob/master/NAS-Bench-102.md).
## [Network Pruning via Transformable Architecture Search](https://arxiv.org/abs/1905.09717)
In this paper, we proposed a differentiable searching strategy for transformable architectures, i.e., searching for the depth and width of a deep neural network.
You could see the highlight of our Transformable Architecture Search (TAS) at our [project page](https://xuanyidong.com/assets/projects/NeurIPS-2019-TAS.html).
@ -42,31 +47,33 @@ You could see the highlight of our Transformable Architecture Search (TAS) at ou
Use `bash ./scripts/prepare.sh` to prepare data splits for `CIFAR-10`, `CIFARR-100`, and `ILSVRC2012`.
If you do not have `ILSVRC2012` data, pleasee comment L12 in `./scripts/prepare.sh`.
Search the depth configuration of ResNet:
args: `cifar10` indicates the dataset name, `ResNet56` indicates the basemodel name, `CIFARX` indicates the searching hyper-parameters, `0.47/0.57` indicates the expected FLOP ratio, `-1` indicates the random seed.
#### Search for the depth configuration of ResNet:
```
CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-depth-gumbel.sh cifar10 ResNet110 CIFARX 0.57 -1
```
Search the width configuration of ResNet:
#### Search for the width configuration of ResNet:
```
CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-width-gumbel.sh cifar10 ResNet110 CIFARX 0.57 -1
```
Search for both depth and width configuration of ResNet:
#### Search for both depth and width configuration of ResNet:
```
CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-shape-cifar.sh cifar10 ResNet56 CIFARX 0.47 -1
```
args: `cifar10` indicates the dataset name, `ResNet56` indicates the basemodel name, `CIFARX` indicates the searching hyper-parameters, `0.47/0.57` indicates the expected FLOP ratio, `-1` indicates the random seed.
### Model Configuration
The searched shapes for ResNet-20/32/56/110/164 in Table 3 in the original paper are listed in [`configs/NeurIPS-2019`](https://github.com/D-X-Y/NAS-Projects/tree/master/configs/NeurIPS-2019).
#### Training the searched shape config from TAS
If you want to directly train a model with searched configuration of TAS, try these:
```
CUDA_VISIBLE_DEVICES=0,1 bash ./scripts/tas-infer-train.sh cifar10 C010-ResNet32 -1
CUDA_VISIBLE_DEVICES=0,1 bash ./scripts/tas-infer-train.sh cifar100 C100-ResNet32 -1
```
### Model Configuration
The searched shapes for ResNet-20/32/56/110/164 in Table 3 in the original paper are listed in [`configs/NeurIPS-2019`](https://github.com/D-X-Y/NAS-Projects/tree/master/configs/NeurIPS-2019).
## [One-Shot Neural Architecture Search via Self-Evaluated Template Network](https://arxiv.org/abs/1910.05733)
@ -103,6 +110,7 @@ The old version is located at [`others/GDAS`](https://github.com/D-X-Y/NAS-Proje
### Usage
#### Reproducing the results of our searched architecture in GDAS
Please use the following scripts to train the searched GDAS-searched CNN on CIFAR-10, CIFAR-100, and ImageNet.
```
CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10 GDAS_V1 96 -1
@ -110,6 +118,7 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar100 GDAS_V1 96 -1
CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k GDAS_V1 256 -1
```
#### Searching on a small search space (NAS-Bench-102)
The GDAS searching codes on a small search space:
```
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 -1
@ -121,11 +130,24 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1
```
#### Training the searched architecture
To train the searched architecture found by the above scripts, please use the following codes:
```
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-a-net.sh '|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|' 16 5
```
`|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|` represents the structure of a searched architecture. My codes will automatically print it during the searching procedure.
# Citation
If you find that this project helps your research, please consider citing some of the following papers:
```
@inproceedings{dong2020nasbench102,
title = {NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search},
author = {Dong, Xuanyi and Yang, Yi},
booktitle = {International Conference on Learning Representations (ICLR)},
year = {2020}
}
@inproceedings{dong2019tas,
title = {Network Pruning via Transformable Architecture Search},
author = {Dong, Xuanyi and Yang, Yi},

View File

@ -10,7 +10,36 @@ from models import get_cell_based_tiny_net
__all__ = ['evaluate_for_seed']
__all__ = ['evaluate_for_seed', 'pure_evaluate']
def pure_evaluate(xloader, network, criterion=torch.nn.CrossEntropyLoss()):
data_time, batch_time, batch = AverageMeter(), AverageMeter(), None
losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter()
latencies = []
network.eval()
with torch.no_grad():
end = time.time()
for i, (inputs, targets) in enumerate(xloader):
targets = targets.cuda(non_blocking=True)
inputs = inputs.cuda(non_blocking=True)
data_time.update(time.time() - end)
# forward
features, logits = network(inputs)
loss = criterion(logits, targets)
batch_time.update(time.time() - end)
if batch is None or batch == inputs.size(0):
batch = inputs.size(0)
latencies.append( batch_time.val - data_time.val )
# record loss and accuracy
prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update (prec1.item(), inputs.size(0))
top5.update (prec5.item(), inputs.size(0))
end = time.time()
if len(latencies) > 2: latencies = latencies[1:]
return losses.avg, top1.avg, top5.avg, latencies

View File

@ -1,4 +1,6 @@
##################################################
# NAS-Bench-102 ##################################
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import os, sys, time, torch, random, argparse
@ -265,13 +267,14 @@ def generate_meta_info(save_dir, max_node, divide=40):
with open(str(script_name), 'w') as cfile:
for start in range(0, total_arch, gaps):
xend = min(start+gaps, total_arch)
cfile.write('{:} python exps/AA-NAS-statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n'.format(macro, start, xend-1))
cfile.write('{:} python exps/NAS-Bench-102/statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n'.format(macro, start, xend-1))
print ('save the post-processing script into {:}'.format(script_name))
if __name__ == '__main__':
#mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()]
parser = argparse.ArgumentParser(description='Algorithm-Agnostic NAS Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
#parser = argparse.ArgumentParser(description='Algorithm-Agnostic NAS Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser = argparse.ArgumentParser(description='NAS-Bench-102', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--mode' , type=str, required=True, help='The script mode.')
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
parser.add_argument('--max_node', type=int, help='The maximum node in a cell.')

View File

@ -0,0 +1,295 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import os, sys, time, argparse, collections
from copy import deepcopy
import torch
import torch.nn as nn
from pathlib import Path
from collections import defaultdict
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from log_utils import AverageMeter, time_string, convert_secs2time
from config_utils import load_config, dict2config
from datasets import get_datasets
# NAS-Bench-102 related module or function
from models import CellStructure, get_cell_based_tiny_net
from nas_102_api import ArchResults, ResultsCount
from functions import pure_evaluate
def create_result_count(used_seed, dataset, arch_config, results, dataloader_dict):
xresult = ResultsCount(dataset, results['net_state_dict'], results['train_acc1es'], results['train_losses'], \
results['param'], results['flop'], arch_config, used_seed, results['total_epoch'], None)
net_config = dict2config({'name': 'infer.tiny', 'C': arch_config['channel'], 'N': arch_config['num_cells'], 'genotype': CellStructure.str2structure(arch_config['arch_str']), 'num_classes':arch_config['class_num']}, None)
network = get_cell_based_tiny_net(net_config)
network.load_state_dict(xresult.get_net_param())
if 'train_times' in results: # new version
xresult.update_train_info(results['train_acc1es'], results['train_acc5es'], results['train_losses'], results['train_times'])
xresult.update_eval(results['valid_acc1es'], results['valid_losses'], results['valid_times'])
else:
if dataset == 'cifar10-valid':
xresult.update_OLD_eval('x-valid' , results['valid_acc1es'], results['valid_losses'])
loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format('cifar10', 'test')], network.cuda())
xresult.update_OLD_eval('ori-test', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss})
xresult.update_latency(latencies)
elif dataset == 'cifar10':
xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses'])
loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'test')], network.cuda())
xresult.update_latency(latencies)
elif dataset == 'cifar100' or dataset == 'ImageNet16-120':
xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses'])
loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'valid')], network.cuda())
xresult.update_OLD_eval('x-valid', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss})
loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'test')], network.cuda())
xresult.update_OLD_eval('x-test' , {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss})
xresult.update_latency(latencies)
else:
raise ValueError('invalid dataset name : {:}'.format(dataset))
return xresult
def account_one_arch(arch_index, arch_str, checkpoints, datasets, dataloader_dict):
information = ArchResults(arch_index, arch_str)
for checkpoint_path in checkpoints:
checkpoint = torch.load(checkpoint_path, map_location='cpu')
used_seed = checkpoint_path.name.split('-')[-1].split('.')[0]
for dataset in datasets:
assert dataset in checkpoint, 'Can not find {:} in arch-{:} from {:}'.format(dataset, arch_index, checkpoint_path)
results = checkpoint[dataset]
assert results['finish-train'], 'This {:} arch seed={:} does not finish train on {:} ::: {:}'.format(arch_index, used_seed, dataset, checkpoint_path)
arch_config = {'channel': results['channel'], 'num_cells': results['num_cells'], 'arch_str': arch_str, 'class_num': results['config']['class_num']}
xresult = create_result_count(used_seed, dataset, arch_config, results, dataloader_dict)
information.update(dataset, int(used_seed), xresult)
return information
def GET_DataLoaders(workers):
torch.set_num_threads(workers)
root_dir = (Path(__file__).parent / '..' / '..').resolve()
torch_dir = Path(os.environ['TORCH_HOME'])
# cifar
cifar_config_path = root_dir / 'configs' / 'nas-benchmark' / 'CIFAR.config'
cifar_config = load_config(cifar_config_path, None, None)
print ('{:} Create data-loader for all datasets'.format(time_string()))
print ('-'*200)
TRAIN_CIFAR10, VALID_CIFAR10, xshape, class_num = get_datasets('cifar10', str(torch_dir/'cifar.python'), -1)
print ('original CIFAR-10 : {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_CIFAR10), len(VALID_CIFAR10), xshape, class_num))
cifar10_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'cifar-split.txt', None, None)
assert cifar10_splits.train[:10] == [0, 5, 7, 11, 13, 15, 16, 17, 20, 24] and cifar10_splits.valid[:10] == [1, 2, 3, 4, 6, 8, 9, 10, 12, 14]
temp_dataset = deepcopy(TRAIN_CIFAR10)
temp_dataset.transform = VALID_CIFAR10.transform
# data loader
trainval_cifar10_loader = torch.utils.data.DataLoader(TRAIN_CIFAR10, batch_size=cifar_config.batch_size, shuffle=True , num_workers=workers, pin_memory=True)
train_cifar10_loader = torch.utils.data.DataLoader(TRAIN_CIFAR10, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.train), num_workers=workers, pin_memory=True)
valid_cifar10_loader = torch.utils.data.DataLoader(temp_dataset , batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.valid), num_workers=workers, pin_memory=True)
test__cifar10_loader = torch.utils.data.DataLoader(VALID_CIFAR10, batch_size=cifar_config.batch_size, shuffle=False, num_workers=workers, pin_memory=True)
print ('CIFAR-10 : trval-loader has {:3d} batch with {:} per batch'.format(len(trainval_cifar10_loader), cifar_config.batch_size))
print ('CIFAR-10 : train-loader has {:3d} batch with {:} per batch'.format(len(train_cifar10_loader), cifar_config.batch_size))
print ('CIFAR-10 : valid-loader has {:3d} batch with {:} per batch'.format(len(valid_cifar10_loader), cifar_config.batch_size))
print ('CIFAR-10 : test--loader has {:3d} batch with {:} per batch'.format(len(test__cifar10_loader), cifar_config.batch_size))
print ('-'*200)
# CIFAR-100
TRAIN_CIFAR100, VALID_CIFAR100, xshape, class_num = get_datasets('cifar100', str(torch_dir/'cifar.python'), -1)
print ('original CIFAR-100: {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_CIFAR100), len(VALID_CIFAR100), xshape, class_num))
cifar100_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'cifar100-test-split.txt', None, None)
assert cifar100_splits.xvalid[:10] == [1, 3, 4, 5, 8, 10, 13, 14, 15, 16] and cifar100_splits.xtest[:10] == [0, 2, 6, 7, 9, 11, 12, 17, 20, 24]
train_cifar100_loader = torch.utils.data.DataLoader(TRAIN_CIFAR100, batch_size=cifar_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True)
valid_cifar100_loader = torch.utils.data.DataLoader(VALID_CIFAR100, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), num_workers=workers, pin_memory=True)
test__cifar100_loader = torch.utils.data.DataLoader(VALID_CIFAR100, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest) , num_workers=workers, pin_memory=True)
print ('CIFAR-100 : train-loader has {:3d} batch'.format(len(train_cifar100_loader)))
print ('CIFAR-100 : valid-loader has {:3d} batch'.format(len(valid_cifar100_loader)))
print ('CIFAR-100 : test--loader has {:3d} batch'.format(len(test__cifar100_loader)))
print ('-'*200)
imagenet16_config_path = 'configs/nas-benchmark/ImageNet-16.config'
imagenet16_config = load_config(imagenet16_config_path, None, None)
TRAIN_ImageNet16_120, VALID_ImageNet16_120, xshape, class_num = get_datasets('ImageNet16-120', str(torch_dir/'cifar.python'/'ImageNet16'), -1)
print ('original TRAIN_ImageNet16_120: {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_ImageNet16_120), len(VALID_ImageNet16_120), xshape, class_num))
imagenet_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'imagenet-16-120-test-split.txt', None, None)
assert imagenet_splits.xvalid[:10] == [1, 2, 3, 6, 7, 8, 9, 12, 16, 18] and imagenet_splits.xtest[:10] == [0, 4, 5, 10, 11, 13, 14, 15, 17, 20]
train_imagenet_loader = torch.utils.data.DataLoader(TRAIN_ImageNet16_120, batch_size=imagenet16_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True)
valid_imagenet_loader = torch.utils.data.DataLoader(VALID_ImageNet16_120, batch_size=imagenet16_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xvalid), num_workers=workers, pin_memory=True)
test__imagenet_loader = torch.utils.data.DataLoader(VALID_ImageNet16_120, batch_size=imagenet16_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xtest) , num_workers=workers, pin_memory=True)
print ('ImageNet-16-120 : train-loader has {:3d} batch with {:} per batch'.format(len(train_imagenet_loader), imagenet16_config.batch_size))
print ('ImageNet-16-120 : valid-loader has {:3d} batch with {:} per batch'.format(len(valid_imagenet_loader), imagenet16_config.batch_size))
print ('ImageNet-16-120 : test--loader has {:3d} batch with {:} per batch'.format(len(test__imagenet_loader), imagenet16_config.batch_size))
# 'cifar10', 'cifar100', 'ImageNet16-120'
loaders = {'cifar10@trainval': trainval_cifar10_loader,
'cifar10@train' : train_cifar10_loader,
'cifar10@valid' : valid_cifar10_loader,
'cifar10@test' : test__cifar10_loader,
'cifar100@train' : train_cifar100_loader,
'cifar100@valid' : valid_cifar100_loader,
'cifar100@test' : test__cifar100_loader,
'ImageNet16-120@train': train_imagenet_loader,
'ImageNet16-120@valid': valid_imagenet_loader,
'ImageNet16-120@test' : test__imagenet_loader}
return loaders
def simplify(save_dir, meta_file, basestr, target_dir):
meta_infos = torch.load(meta_file, map_location='cpu')
meta_archs = meta_infos['archs'] # a list of architecture strings
meta_num_archs = meta_infos['total']
meta_max_node = meta_infos['max_node']
assert meta_num_archs == len(meta_archs), 'invalid number of archs : {:} vs {:}'.format(meta_num_archs, len(meta_archs))
sub_model_dirs = sorted(list(save_dir.glob('*-*-{:}'.format(basestr))))
print ('{:} find {:} directories used to save checkpoints'.format(time_string(), len(sub_model_dirs)))
subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0
num_seeds = defaultdict(lambda: 0)
for index, sub_dir in enumerate(sub_model_dirs):
xcheckpoints = list(sub_dir.glob('arch-*-seed-*.pth'))
arch_indexes = set()
for checkpoint in xcheckpoints:
temp_names = checkpoint.name.split('-')
assert len(temp_names) == 4 and temp_names[0] == 'arch' and temp_names[2] == 'seed', 'invalid checkpoint name : {:}'.format(checkpoint.name)
arch_indexes.add( temp_names[1] )
subdir2archs[sub_dir] = sorted(list(arch_indexes))
num_evaluated_arch += len(arch_indexes)
# count number of seeds for each architecture
for arch_index in arch_indexes:
num_seeds[ len(list(sub_dir.glob('arch-{:}-seed-*.pth'.format(arch_index)))) ] += 1
print('{:} There are {:5d} architectures that have been evaluated ({:} in total).'.format(time_string(), num_evaluated_arch, meta_num_archs))
for key in sorted( list( num_seeds.keys() ) ): print ('{:} There are {:5d} architectures that are evaluated {:} times.'.format(time_string(), num_seeds[key], key))
dataloader_dict = GET_DataLoaders( 6 )
to_save_simply = save_dir / 'simplifies'
to_save_allarc = save_dir / 'simplifies' / 'architectures'
if not to_save_simply.exists(): to_save_simply.mkdir(parents=True, exist_ok=True)
if not to_save_allarc.exists(): to_save_allarc.mkdir(parents=True, exist_ok=True)
assert (save_dir / target_dir) in subdir2archs, 'can not find {:}'.format(target_dir)
arch2infos, datasets = {}, ('cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120')
evaluated_indexes = set()
target_directory = save_dir / target_dir
target_less_dir = save_dir / '{:}-LESS'.format(target_dir)
arch_indexes = subdir2archs[ target_directory ]
num_seeds = defaultdict(lambda: 0)
end_time = time.time()
arch_time = AverageMeter()
for idx, arch_index in enumerate(arch_indexes):
checkpoints = list(target_directory.glob('arch-{:}-seed-*.pth'.format(arch_index)))
ckps_less = list(target_less_dir.glob('arch-{:}-seed-*.pth'.format(arch_index)))
# create the arch info for each architecture
try:
arch_info_full = account_one_arch(arch_index, meta_archs[int(arch_index)], checkpoints, datasets, dataloader_dict)
arch_info_less = account_one_arch(arch_index, meta_archs[int(arch_index)], ckps_less, ['cifar10-valid'], dataloader_dict)
num_seeds[ len(checkpoints) ] += 1
except:
print('Loading {:} failed, : {:}'.format(arch_index, checkpoints))
continue
assert int(arch_index) not in evaluated_indexes, 'conflict arch-index : {:}'.format(arch_index)
assert 0 <= int(arch_index) < len(meta_archs), 'invalid arch-index {:} (not found in meta_archs)'.format(arch_index)
arch_info = {'full': arch_info_full, 'less': arch_info_less}
evaluated_indexes.add( int(arch_index) )
arch2infos[int(arch_index)] = arch_info
torch.save({'full': arch_info_full.state_dict(),
'less': arch_info_less.state_dict()}, to_save_allarc / '{:}-FULL.pth'.format(arch_index))
arch_info['full'].clear_params()
arch_info['less'].clear_params()
torch.save({'full': arch_info_full.state_dict(),
'less': arch_info_less.state_dict()}, to_save_allarc / '{:}-SIMPLE.pth'.format(arch_index))
# measure elapsed time
arch_time.update(time.time() - end_time)
end_time = time.time()
need_time = '{:}'.format( convert_secs2time(arch_time.avg * (len(arch_indexes)-idx-1), True) )
print('{:} {:} [{:03d}/{:03d}] : {:} still need {:}'.format(time_string(), target_dir, idx, len(arch_indexes), arch_index, need_time))
# measure time
xstrs = ['{:}:{:03d}'.format(key, num_seeds[key]) for key in sorted( list( num_seeds.keys() ) ) ]
print('{:} {:} done : {:}'.format(time_string(), target_dir, xstrs))
final_infos = {'meta_archs' : meta_archs,
'total_archs': meta_num_archs,
'basestr' : basestr,
'arch2infos' : arch2infos,
'evaluated_indexes': evaluated_indexes}
save_file_name = to_save_simply / '{:}.pth'.format(target_dir)
torch.save(final_infos, save_file_name)
print ('Save {:} / {:} architecture results into {:}.'.format(len(evaluated_indexes), meta_num_archs, save_file_name))
def merge_all(save_dir, meta_file, basestr):
meta_infos = torch.load(meta_file, map_location='cpu')
meta_archs = meta_infos['archs']
meta_num_archs = meta_infos['total']
meta_max_node = meta_infos['max_node']
assert meta_num_archs == len(meta_archs), 'invalid number of archs : {:} vs {:}'.format(meta_num_archs, len(meta_archs))
sub_model_dirs = sorted(list(save_dir.glob('*-*-{:}'.format(basestr))))
print ('{:} find {:} directories used to save checkpoints'.format(time_string(), len(sub_model_dirs)))
for index, sub_dir in enumerate(sub_model_dirs):
arch_info_files = sorted( list(sub_dir.glob('arch-*-seed-*.pth') ) )
print ('The {:02d}/{:02d}-th directory : {:} : {:} runs.'.format(index, len(sub_model_dirs), sub_dir, len(arch_info_files)))
arch2infos, evaluated_indexes = dict(), set()
for IDX, sub_dir in enumerate(sub_model_dirs):
ckp_path = sub_dir.parent / 'simplifies' / '{:}.pth'.format(sub_dir.name)
if ckp_path.exists():
sub_ckps = torch.load(ckp_path, map_location='cpu')
assert sub_ckps['total_archs'] == meta_num_archs and sub_ckps['basestr'] == basestr
xarch2infos = sub_ckps['arch2infos']
xevalindexs = sub_ckps['evaluated_indexes']
for eval_index in xevalindexs:
assert eval_index not in evaluated_indexes and eval_index not in arch2infos
#arch2infos[eval_index] = xarch2infos[eval_index].state_dict()
arch2infos[eval_index] = {'full': xarch2infos[eval_index]['full'].state_dict(),
'less': xarch2infos[eval_index]['less'].state_dict()}
evaluated_indexes.add( eval_index )
print ('{:} [{:03d}/{:03d}] merge data from {:} with {:} models.'.format(time_string(), IDX, len(sub_model_dirs), ckp_path, len(xevalindexs)))
else:
raise ValueError('Can not find {:}'.format(ckp_path))
#print ('{:} [{:03d}/{:03d}] can not find {:}, skip.'.format(time_string(), IDX, len(subdir2archs), ckp_path))
evaluated_indexes = sorted( list( evaluated_indexes ) )
print ('Finally, there are {:} architectures that have been trained and evaluated.'.format(len(evaluated_indexes)))
to_save_simply = save_dir / 'simplifies'
if not to_save_simply.exists(): to_save_simply.mkdir(parents=True, exist_ok=True)
final_infos = {'meta_archs' : meta_archs,
'total_archs': meta_num_archs,
'arch2infos' : arch2infos,
'evaluated_indexes': evaluated_indexes}
save_file_name = to_save_simply / '{:}-final-infos.pth'.format(basestr)
torch.save(final_infos, save_file_name)
print ('Save {:} / {:} architecture results into {:}.'.format(len(evaluated_indexes), meta_num_archs, save_file_name))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='NAS-BENCH-102', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--mode' , type=str, choices=['cal', 'merge'], help='The running mode for this script.')
parser.add_argument('--base_save_dir', type=str, default='./output/NAS-BENCH-102-4', help='The base-name of folder to save checkpoints and log.')
parser.add_argument('--target_dir' , type=str, help='The target directory.')
parser.add_argument('--max_node' , type=int, default=4, help='The maximum node in a cell.')
parser.add_argument('--channel' , type=int, default=16, help='The number of channels.')
parser.add_argument('--num_cells' , type=int, default=5, help='The number of cells in one stage.')
args = parser.parse_args()
save_dir = Path( args.base_save_dir )
meta_path = save_dir / 'meta-node-{:}.pth'.format(args.max_node)
assert save_dir.exists(), 'invalid save dir path : {:}'.format(save_dir)
assert meta_path.exists(), 'invalid saved meta path : {:}'.format(meta_path)
print ('start the statistics of our nas-benchmark from {:} using {:}.'.format(save_dir, args.target_dir))
basestr = 'C{:}-N{:}'.format(args.channel, args.num_cells)
if args.mode == 'cal':
simplify(save_dir, meta_path, basestr, args.target_dir)
elif args.mode == 'merge':
merge_all(save_dir, meta_path, basestr)
else:
raise ValueError('invalid mode : {:}'.format(args.mode))

View File

@ -17,7 +17,7 @@ from datasets import get_datasets, SearchDataset
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from aa_nas_api import AANASBenchAPI
from nas_102_api import NASBench102API as API
from models import CellStructure, get_search_spaces
from R_EA import train_and_eval
# BOHB: Robust and Efficient Hyperparameter Optimization at Scale, ICML 2018
@ -112,7 +112,7 @@ def main(xargs, nas_bench):
num_workers = 1
#nas_bench = AANASBenchAPI(xargs.arch_nas_dataset)
logger.log('{:} Create AA-NAS-BENCH-API DONE'.format(time_string()))
#logger.log('{:} Create NAS-BENCH-API DONE'.format(time_string()))
workers = []
for i in range(num_workers):
w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, nas_bench=nas_bench, run_id=hb_run_id, id=i)
@ -179,7 +179,7 @@ if __name__ == '__main__':
nas_bench = None
else:
print ('{:} build NAS-Benchmark-API from {:}'.format(time_string(), args.arch_nas_dataset))
nas_bench = AANASBenchAPI(args.arch_nas_dataset)
nas_bench = API(args.arch_nas_dataset)
if args.rand_seed < 0:
save_dir, all_indexes, num = None, [], 500
for i in range(num):

View File

@ -15,7 +15,7 @@ from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_che
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_search_spaces
from aa_nas_api import AANASBenchAPI
from nas_102_api import NASBench102API as API
from R_EA import train_and_eval, random_architecture_func
@ -92,7 +92,7 @@ if __name__ == '__main__':
nas_bench = None
else:
print ('{:} build NAS-Benchmark-API from {:}'.format(time_string(), args.arch_nas_dataset))
nas_bench = AANASBenchAPI(args.arch_nas_dataset)
nas_bench = API(args.arch_nas_dataset)
if args.rand_seed < 0:
save_dir, all_indexes, num = None, [], 500
for i in range(num):

View File

@ -16,7 +16,7 @@ from datasets import get_datasets, SearchDataset
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from aa_nas_api import AANASBenchAPI
from nas_102_api import NASBench102API as API
from models import CellStructure, get_search_spaces
@ -230,7 +230,7 @@ if __name__ == '__main__':
nas_bench = None
else:
print ('{:} build NAS-Benchmark-API from {:}'.format(time_string(), args.arch_nas_dataset))
nas_bench = AANASBenchAPI(args.arch_nas_dataset)
nas_bench = API(args.arch_nas_dataset)
if args.rand_seed < 0:
save_dir, all_indexes, num = None, [], 500
for i in range(num):

View File

@ -17,7 +17,7 @@ from datasets import get_datasets, SearchDataset
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from aa_nas_api import AANASBenchAPI
from nas_102_api import NASBench102API
from models import CellStructure, get_search_spaces
from R_EA import train_and_eval

27
exps/vis/test.py Normal file
View File

@ -0,0 +1,27 @@
# python ./exps/vis/test.py
import os, sys
from pathlib import Path
import torch
import numpy as np
from collections import OrderedDict
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
def test_nas_api():
from nas_102_api import ArchResults
xdata = torch.load('/home/dxy/FOR-RELEASE/NAS-Projects/output/NAS-BENCH-102-4/simplifies/architectures/000157-FULL.pth')
for key in ['full', 'less']:
print ('\n------------------------- {:} -------------------------'.format(key))
archRes = ArchResults.create_from_state_dict(xdata[key])
print(archRes)
print(archRes.arch_idx_str())
print(archRes.get_dataset_names())
print(archRes.get_comput_costs('cifar10-valid'))
# get the metrics
print(archRes.get_metrics('cifar10-valid', 'x-valid', None, False))
print(archRes.get_metrics('cifar10-valid', 'x-valid', None, True))
print(archRes.query('cifar10-valid', 777))
if __name__ == '__main__':
test_nas_api()

View File

@ -1,5 +1,5 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
from .api import AANASBenchAPI
from .api import NASBench102API
from .api import ArchResults, ResultsCount

View File

@ -2,7 +2,7 @@
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import os, sys, copy, random, torch, numpy as np
from collections import OrderedDict
from collections import OrderedDict, defaultdict
def print_information(information, extra_info=None, show=False):
@ -30,16 +30,17 @@ def print_information(information, extra_info=None, show=False):
return strings
class AANASBenchAPI(object):
class NASBench102API(object):
def __init__(self, file_path_or_dict, verbose=True):
if isinstance(file_path_or_dict, str):
if verbose: print('try to create AA-NAS-Bench api from {:}'.format(file_path_or_dict))
if verbose: print('try to create NAS-Bench-102 api from {:}'.format(file_path_or_dict))
assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict)
file_path_or_dict = torch.load(file_path_or_dict)
else:
file_path_or_dict = copy.deepcopy( file_path_or_dict )
assert isinstance(file_path_or_dict, dict), 'It should be a dict instead of {:}'.format(type(file_path_or_dict))
import pdb; pdb.set_trace() # we will update this api soon
keys = ('meta_archs', 'arch2infos', 'evaluated_indexes')
for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key)
self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] )
@ -144,27 +145,46 @@ class ArchResults(object):
def get_comput_costs(self, dataset):
x_seeds = self.dataset_seed[dataset]
results = [self.all_results[ (dataset, seed) ] for seed in x_seeds]
flops = [result.flop for result in results]
params = [result.params for result in results]
flops = [result.flop for result in results]
params = [result.params for result in results]
lantencies = [result.get_latency() for result in results]
return np.mean(flops), np.mean(params), np.mean(lantencies)
lantencies = [x for x in lantencies if x > 0]
mean_latency = np.mean(lantencies) if len(lantencies) > 0 else None
time_infos = defaultdict(list)
for result in results:
time_info = result.get_times()
for key, value in time_info.items(): time_infos[key].append( value )
info = {'flops' : np.mean(flops),
'params' : np.mean(params),
'latency': mean_latency}
for key, value in time_infos.items():
if len(value) > 0 and value[0] is not None:
info[key] = np.mean(value)
else: info[key] = None
return info
def get_metrics(self, dataset, setname, iepoch=None, is_random=False):
x_seeds = self.dataset_seed[dataset]
results = [self.all_results[ (dataset, seed) ] for seed in x_seeds]
loss, accuracy = [], []
infos = defaultdict(list)
for result in results:
if setname == 'train':
info = result.get_train(iepoch)
else:
info = result.get_eval(setname, iepoch)
loss.append( info['loss'] )
accuracy.append( info['accuracy'] )
for key, value in info.items(): infos[key].append( value )
return_info = dict()
if is_random:
index = random.randint(0, len(loss)-1)
return loss[index], accuracy[index]
index = random.randint(0, len(results)-1)
for key, value in infos.items(): return_info[key] = value[index]
else:
return float(np.mean(loss)), float(np.mean(accuracy))
for key, value in infos.items():
if len(value) > 0 and value[0] is not None:
return_info[key] = np.mean(value)
else: return_info[key] = None
return return_info
def show(self, is_print=False):
return print_information(self, None, is_print)
@ -245,8 +265,10 @@ class ResultsCount(object):
def __init__(self, name, state_dict, train_accs, train_losses, params, flop, arch_config, seed, epochs, latency):
self.name = name
self.net_state_dict = state_dict
self.train_accs = copy.deepcopy(train_accs)
self.train_acc1es = copy.deepcopy(train_accs)
self.train_acc5es = None
self.train_losses = copy.deepcopy(train_losses)
self.train_times = None
self.arch_config = copy.deepcopy(arch_config)
self.params = params
self.flop = flop
@ -256,44 +278,97 @@ class ResultsCount(object):
# evaluation results
self.reset_eval()
def update_train_info(self, train_acc1es, train_acc5es, train_losses, train_times):
self.train_acc1es = train_acc1es
self.train_acc5es = train_acc5es
self.train_losses = train_losses
self.train_times = train_times
def reset_eval(self):
self.eval_names = []
self.eval_accs = {}
self.eval_acc1es = {}
self.eval_times = {}
self.eval_losses = {}
def update_latency(self, latency):
self.latency = copy.deepcopy( latency )
def update_eval(self, accs, losses, times): # old version
data_names = set([x.split('@')[0] for x in accs.keys()])
for data_name in data_names:
assert data_name not in self.eval_names, '{:} has already been added into eval-names'.format(data_name)
self.eval_names.append( data_name )
for iepoch in range(self.epochs):
xkey = '{:}@{:}'.format(data_name, iepoch)
self.eval_acc1es[ xkey ] = accs[ xkey ]
self.eval_losses[ xkey ] = losses[ xkey ]
self.eval_times [ xkey ] = times[ xkey ]
def update_OLD_eval(self, name, accs, losses): # old version
assert name not in self.eval_names, '{:} has already added'.format(name)
self.eval_names.append( name )
for iepoch in range(self.epochs):
if iepoch in accs:
self.eval_acc1es['{:}@{:}'.format(name,iepoch)] = accs[iepoch]
self.eval_losses['{:}@{:}'.format(name,iepoch)] = losses[iepoch]
def __repr__(self):
num_eval = len(self.eval_names)
set_name = '[' + ', '.join(self.eval_names) + ']'
return ('{name}({xname}, arch={arch}, FLOP={flop:.2f}M, Param={param:.3f}MB, seed={seed}, {num_eval} eval-sets: {set_name})'.format(name=self.__class__.__name__, xname=self.name, arch=self.arch_config['arch_str'], flop=self.flop, param=self.params, seed=self.seed, num_eval=num_eval, set_name=set_name))
def get_latency(self):
if self.latency is None: return -1
else: return sum(self.latency) / len(self.latency)
def update_eval(self, name, accs, losses):
assert name not in self.eval_names, '{:} has already added'.format(name)
self.eval_names.append( name )
self.eval_accs[name] = copy.deepcopy( accs )
self.eval_losses[name] = copy.deepcopy( losses )
def get_times(self):
if self.train_times is not None and isinstance(self.train_times, dict):
train_times = list( self.train_times.values() )
time_info = {'T-train@epoch': np.mean(train_times), 'T-train@total': np.sum(train_times)}
for name in self.eval_names:
xtimes = [self.eval_times['{:}@{:}'.format(name,i)] for i in range(self.epochs)]
time_info['T-{:}@epoch'.format(name)] = np.mean(xtimes)
time_info['T-{:}@total'.format(name)] = np.sum(xtimes)
else:
time_info = {'T-train@epoch': None, 'T-train@total': None }
for name in self.eval_names:
time_info['T-{:}@epoch'.format(name)] = None
time_info['T-{:}@total'.format(name)] = None
return time_info
def __repr__(self):
num_eval = len(self.eval_names)
return ('{name}({xname}, arch={arch}, FLOP={flop:.2f}M, Param={param:.3f}MB, seed={seed}, {num_eval} eval-sets)'.format(name=self.__class__.__name__, xname=self.name, arch=self.arch_config['arch_str'], flop=self.flop, param=self.params, seed=self.seed, num_eval=num_eval))
def valid_evaluation_set(self):
def get_eval_set(self):
return self.eval_names
def get_train(self, iepoch=None):
if iepoch is None: iepoch = self.epochs-1
assert 0 <= iepoch < self.epochs, 'invalid iepoch={:} < {:}'.format(iepoch, self.epochs)
return {'loss': self.train_losses[iepoch], 'accuracy': self.train_accs[iepoch]}
if self.train_times is not None: xtime = self.train_times[iepoch]
else : xtime = None
return {'iepoch' : iepoch,
'loss' : self.train_losses[iepoch],
'accuracy': self.train_acc1es[iepoch],
'time' : xtime}
def get_eval(self, name, iepoch=None):
if iepoch is None: iepoch = self.epochs-1
assert 0 <= iepoch < self.epochs, 'invalid iepoch={:} < {:}'.format(iepoch, self.epochs)
return {'loss': self.eval_losses[name][iepoch], 'accuracy': self.eval_accs[name][iepoch]}
if isinstance(self.eval_times,dict) and len(self.eval_times) > 0:
xtime = self.eval_times['{:}@{:}'.format(name,iepoch)]
else: xtime = None
return {'iepoch' : iepoch,
'loss' : self.eval_losses['{:}@{:}'.format(name,iepoch)],
'accuracy': self.eval_acc1es['{:}@{:}'.format(name,iepoch)],
'time' : xtime}
def get_net_param(self):
return self.net_state_dict
def get_config(self, str2structure):
#return copy.deepcopy(self.arch_config)
return {'name': 'infer.tiny', 'C': self.arch_config['channel'], \
'N' : self.arch_config['num_cells'], \
'genotype': str2structure(self.arch_config['arch_str']), 'num_classes': self.arch_config['class_num']}
def state_dict(self):
_state_dict = {key: value for key, value in self.__dict__.items()}
return _state_dict