update for NAS-Bench-102
This commit is contained in:
parent
6c5fe506d5
commit
69ca0860aa
3
.gitignore
vendored
3
.gitignore
vendored
@ -112,3 +112,6 @@ logs
|
||||
a.pth
|
||||
cal-merge*.sh
|
||||
GPU-*.sh
|
||||
cal.sh
|
||||
aaa
|
||||
cx.sh
|
||||
|
156
NAS-Bench-102.md
Normal file
156
NAS-Bench-102.md
Normal file
@ -0,0 +1,156 @@
|
||||
# NAS-BENCH-102: Extending the Scope of Reproducible Neural Architecture Search
|
||||
|
||||
We propose an algorithm-agnostic NAS benchmark (NAS-Bench-102) with a fixed search space, which provides a unified benchmark for almost any up-to-date NAS algorithms.
|
||||
The design of our search space is inspired from that used in the most popular cell-based searching algorithms, where a cell is represented as a directed acyclic graph.
|
||||
Each edge here is associated with an operation selected from a predefined operation set.
|
||||
For it to be applicable for all NAS algorithms, the search space defined in NAS-Bench-102 includes 4 nodes and 5 associated operation options, which generates 15,625 neural cell candidates in total.
|
||||
|
||||
In this Markdown file, we provide:
|
||||
- Detailed instruction to reproduce NAS-Bench-102.
|
||||
- 10 NAS algorithms evaluated in our paper.
|
||||
|
||||
Note: please use `PyTorch >= 1.2.0` and `Python >= 3.6.0`.
|
||||
|
||||
## How to Use NAS-Bench-102
|
||||
|
||||
1. Creating an API instance from a file:
|
||||
```
|
||||
from nas_102_api import NASBench102API
|
||||
api = NASBench102API('$path_to_meta_nas_bench_file')
|
||||
api = NASBench102API('NAS-Bench-102-v1_0.pth')
|
||||
```
|
||||
|
||||
2. Show the number of architectures `len(api)` and each architecture `api[i]`:
|
||||
```
|
||||
num = len(api)
|
||||
for i, arch_str in enumerate(api):
|
||||
print ('{:5d}/{:5d} : {:}'.format(i, len(api), arch_str))
|
||||
```
|
||||
|
||||
3. Show the results of all trials for a single architecture:
|
||||
```
|
||||
# show all information for a specific architecture
|
||||
api.show(1)
|
||||
api.show(2)
|
||||
|
||||
# show the mean loss and accuracy of an architecture
|
||||
info = api.query_meta_info_by_index(1)
|
||||
loss, accuracy = info.get_metrics('cifar10', 'train')
|
||||
flops, params, latency = info.get_comput_costs('cifar100')
|
||||
|
||||
# get the detailed information
|
||||
results = api.query_by_index(1, 'cifar100')
|
||||
print ('There are {:} trials for this architecture [{:}] on cifar100'.format(len(results), api[1]))
|
||||
print ('Latency : {:}'.format(results[0].get_latency()))
|
||||
print ('Train Info : {:}'.format(results[0].get_train()))
|
||||
print ('Valid Info : {:}'.format(results[0].get_eval('x-valid')))
|
||||
print ('Test Info : {:}'.format(results[0].get_eval('x-test')))
|
||||
# for the metric after a specific epoch
|
||||
print ('Train Info [10-th epoch] : {:}'.format(results[0].get_train(10)))
|
||||
```
|
||||
|
||||
4. Query the index of an architecture by string
|
||||
```
|
||||
index = api.query_index_by_arch('|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|')
|
||||
api.show(index)
|
||||
```
|
||||
|
||||
5. For other usages, please see `lib/aa_nas_api/api.py`
|
||||
|
||||
### Detailed Instruction
|
||||
|
||||
In `nas_102_api`, we define three classes: `NASBench102API`, `ArchResults`, `ResultsCount`.
|
||||
|
||||
`ResultsCount` maintains all information of a specific trial. One can instantiate ResultsCount and get the info via the following codes (`000157-FULL.pth` saves all information of all trials of 157-th architecture):
|
||||
```
|
||||
from nas_102_api import ResultsCount
|
||||
xdata = torch.load('000157-FULL.pth')
|
||||
odata = xdata['full']['all_results'][('cifar10-valid', 777)]
|
||||
result = ResultsCount.create_from_state_dict( odata )
|
||||
print(result) # print it
|
||||
print(result.get_train()) # print the final training loss/accuracy/[optional:time-cost-of-a-training-epoch]
|
||||
print(result.get_train(11)) # print the training info of the 11-th epoch
|
||||
print(result.get_eval('x-valid')) # print the final evaluation info on the validation set
|
||||
print(result.get_eval('x-valid', 11)) # print the info on the validation set of the 11-th epoch
|
||||
print(result.get_latency()) # print the evaluation latency [in batch]
|
||||
result.get_net_param() # the trained parameters of this trial
|
||||
arch_config = result.get_config(CellStructure.str2structure) # create the network with params
|
||||
net_config = dict2config(arch_config, None)
|
||||
network = get_cell_based_tiny_net(net_config)
|
||||
network.load_state_dict(result.get_net_param())
|
||||
```
|
||||
|
||||
`ArchResults` maintains all information of all trials of an architecture. Please see the following usages:
|
||||
```
|
||||
from nas_102_api import ArchResults
|
||||
xdata = torch.load('000157-FULL.pth')
|
||||
archRes = ArchResults.create_from_state_dict(xdata['less']) # load trials trained with 12 epochs
|
||||
archRes = ArchResults.create_from_state_dict(xdata['full']) # load trials trained with 200 epochs
|
||||
|
||||
print(archRes.arch_idx_str()) # print the index of this architecture
|
||||
print(archRes.get_dataset_names()) # print the supported training data
|
||||
print(archRes.get_comput_costs('cifar10-valid')) # print all computational info when training on cifar10-valid
|
||||
print(archRes.get_metrics('cifar10-valid', 'x-valid', None, False)) # print the average loss/accuracy/time on all trials
|
||||
print(archRes.get_metrics('cifar10-valid', 'x-valid', None, True)) # print loss/accuracy/time of a randomly selected trial
|
||||
```
|
||||
|
||||
`NASBench102API` is the topest level api. Please see the following usages:
|
||||
```
|
||||
from nas_102_api import NASBench102API as API
|
||||
api = API('NAS-Bench-102-v1_0.pth')
|
||||
```
|
||||
|
||||
## Instruction to Re-Generate NAS-Bench-102
|
||||
|
||||
1. generate the meta file for NAS-Bench-102 using the following script, where `NAS-BENCH-102` indicates the name and `4` indicates the maximum number of nodes in a cell.
|
||||
```
|
||||
bash scripts-search/NAS-Bench-102/meta-gen.sh NAS-BENCH-102 4
|
||||
```
|
||||
|
||||
2. train earch architecture on a single GPU (see commands in `output/NAS-BENCH-102-4/BENCH-102-N4.opt-full.script`, which is automatically generated by step-1).
|
||||
```
|
||||
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-models.sh 0 0 389 -1 '777 888 999'
|
||||
```
|
||||
This command will train 390 architectures (id from 0 to 389) using the following four kinds of splits with three random seeds (777, 888, 999).
|
||||
|
||||
| Dataset | Train | Eval |
|
||||
|:---------------:|:-------------:|:------------:|
|
||||
| CIFAR-10 | train | valid / test |
|
||||
| CIFAR-10 | train + valid | test |
|
||||
| CIFAR-100 | train | valid / test |
|
||||
| ImageNet-16-120 | train | valid / test |
|
||||
|
||||
3. calculate the latency, merge the results of all architectures, and simplify the results.
|
||||
(see commands in `output/NAS-BENCH-102-4/meta-node-4.cal-script.txt` which is automatically generated by step-1).
|
||||
```
|
||||
OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0 python exps/NAS-Bench-102/statistics.py --mode cal --target_dir 000000-000389-C16-N5
|
||||
```
|
||||
|
||||
4. merge all results into a single file for NAS-Bench-102-API.
|
||||
```
|
||||
OMP_NUM_THREADS=4 python exps/NAS-Bench-102/statistics.py --mode merge
|
||||
```
|
||||
This command will generate a single file `output/NAS-BENCH-102-4/simplifies/C16-N5-final-infos.pth` contains all the data for NAS-Bench-102.
|
||||
This generated file will serve as the input for our NAS-Bench-102 API.
|
||||
|
||||
[option] train a single architecture on a single GPU.
|
||||
```
|
||||
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-a-net.sh resnet 16 5
|
||||
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-a-net.sh '|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|' 16 5
|
||||
```
|
||||
|
||||
## To Reproduce 10 Baseline NAS Algorithms in NAS-Bench-102
|
||||
|
||||
We have tried our best to implement each method. However, still, some algorithms might obtain non-optimal results since their hyper-parameters might not fit our NAS-Bench-102.
|
||||
If researchers can provide better results with different hyper-parameters, we are happy to update results according to the new experimental results. We also welcome more NAS algorithms to test on our dataset and would include them accordingly.
|
||||
|
||||
- [1] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1`
|
||||
- [2] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1`
|
||||
- [3] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 -1`
|
||||
- [4] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/SETN.sh cifar10 -1`
|
||||
- [5] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/ENAS.sh cifar10 -1`
|
||||
- [6] `CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/RANDOM-NAS.sh cifar10 -1`
|
||||
- [7] `bash ./scripts-search/algos/R-EA.sh -1`
|
||||
- [8] `bash ./scripts-search/algos/Random.sh -1`
|
||||
- [9] `bash ./scripts-search/algos/REINFORCE.sh -1`
|
||||
- [10] `bash ./scripts-search/algos/BOHB.sh -1`
|
38
README.md
38
README.md
@ -6,7 +6,8 @@ More NAS resources can be found in [Awesome-NAS](https://github.com/D-X-Y/Awesom
|
||||
- Network Pruning via Transformable Architecture Search, NeurIPS 2019
|
||||
- One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019
|
||||
- Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019
|
||||
- 10 NAS algorithms for the neural topology in `exps/algos`
|
||||
- NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search, ICLR 2020
|
||||
- 10 NAS algorithms for the neural topology in `exps/algos` (see [NAS-Bench-102.md](https://github.com/D-X-Y/NAS-Projects/blob/master/NAS-Bench-102.md) for more details)
|
||||
- Several typical classification models, e.g., ResNet and DenseNet (see [BASELINE.md](https://github.com/D-X-Y/NAS-Projects/blob/master/BASELINE.md))
|
||||
|
||||
|
||||
@ -27,6 +28,10 @@ flop, param = get_model_infos(net, (1,3,32,32))
|
||||
2. Different NAS-searched architectures are defined [here](https://github.com/D-X-Y/NAS-Projects/blob/master/lib/nas_infer_model/DXYs/genotypes.py).
|
||||
|
||||
|
||||
## NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search
|
||||
|
||||
We build a new benchmark for neural architecture search, please see more details in [NAS-Bench-102.md](https://github.com/D-X-Y/NAS-Projects/blob/master/NAS-Bench-102.md).
|
||||
|
||||
## [Network Pruning via Transformable Architecture Search](https://arxiv.org/abs/1905.09717)
|
||||
In this paper, we proposed a differentiable searching strategy for transformable architectures, i.e., searching for the depth and width of a deep neural network.
|
||||
You could see the highlight of our Transformable Architecture Search (TAS) at our [project page](https://xuanyidong.com/assets/projects/NeurIPS-2019-TAS.html).
|
||||
@ -42,31 +47,33 @@ You could see the highlight of our Transformable Architecture Search (TAS) at ou
|
||||
Use `bash ./scripts/prepare.sh` to prepare data splits for `CIFAR-10`, `CIFARR-100`, and `ILSVRC2012`.
|
||||
If you do not have `ILSVRC2012` data, pleasee comment L12 in `./scripts/prepare.sh`.
|
||||
|
||||
Search the depth configuration of ResNet:
|
||||
args: `cifar10` indicates the dataset name, `ResNet56` indicates the basemodel name, `CIFARX` indicates the searching hyper-parameters, `0.47/0.57` indicates the expected FLOP ratio, `-1` indicates the random seed.
|
||||
|
||||
#### Search for the depth configuration of ResNet:
|
||||
```
|
||||
CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-depth-gumbel.sh cifar10 ResNet110 CIFARX 0.57 -1
|
||||
```
|
||||
|
||||
Search the width configuration of ResNet:
|
||||
#### Search for the width configuration of ResNet:
|
||||
```
|
||||
CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-width-gumbel.sh cifar10 ResNet110 CIFARX 0.57 -1
|
||||
```
|
||||
|
||||
Search for both depth and width configuration of ResNet:
|
||||
#### Search for both depth and width configuration of ResNet:
|
||||
```
|
||||
CUDA_VISIBLE_DEVICES=0,1 bash ./scripts-search/search-shape-cifar.sh cifar10 ResNet56 CIFARX 0.47 -1
|
||||
```
|
||||
|
||||
args: `cifar10` indicates the dataset name, `ResNet56` indicates the basemodel name, `CIFARX` indicates the searching hyper-parameters, `0.47/0.57` indicates the expected FLOP ratio, `-1` indicates the random seed.
|
||||
|
||||
### Model Configuration
|
||||
The searched shapes for ResNet-20/32/56/110/164 in Table 3 in the original paper are listed in [`configs/NeurIPS-2019`](https://github.com/D-X-Y/NAS-Projects/tree/master/configs/NeurIPS-2019).
|
||||
#### Training the searched shape config from TAS
|
||||
If you want to directly train a model with searched configuration of TAS, try these:
|
||||
```
|
||||
CUDA_VISIBLE_DEVICES=0,1 bash ./scripts/tas-infer-train.sh cifar10 C010-ResNet32 -1
|
||||
CUDA_VISIBLE_DEVICES=0,1 bash ./scripts/tas-infer-train.sh cifar100 C100-ResNet32 -1
|
||||
```
|
||||
|
||||
### Model Configuration
|
||||
The searched shapes for ResNet-20/32/56/110/164 in Table 3 in the original paper are listed in [`configs/NeurIPS-2019`](https://github.com/D-X-Y/NAS-Projects/tree/master/configs/NeurIPS-2019).
|
||||
|
||||
|
||||
## [One-Shot Neural Architecture Search via Self-Evaluated Template Network](https://arxiv.org/abs/1910.05733)
|
||||
|
||||
@ -103,6 +110,7 @@ The old version is located at [`others/GDAS`](https://github.com/D-X-Y/NAS-Proje
|
||||
|
||||
### Usage
|
||||
|
||||
#### Reproducing the results of our searched architecture in GDAS
|
||||
Please use the following scripts to train the searched GDAS-searched CNN on CIFAR-10, CIFAR-100, and ImageNet.
|
||||
```
|
||||
CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10 GDAS_V1 96 -1
|
||||
@ -110,6 +118,7 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar100 GDAS_V1 96 -1
|
||||
CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k GDAS_V1 256 -1
|
||||
```
|
||||
|
||||
#### Searching on a small search space (NAS-Bench-102)
|
||||
The GDAS searching codes on a small search space:
|
||||
```
|
||||
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/GDAS.sh cifar10 -1
|
||||
@ -121,11 +130,24 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V1.sh cifar10 -1
|
||||
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/algos/DARTS-V2.sh cifar10 -1
|
||||
```
|
||||
|
||||
#### Training the searched architecture
|
||||
To train the searched architecture found by the above scripts, please use the following codes:
|
||||
```
|
||||
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/NAS-Bench-102/train-a-net.sh '|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|' 16 5
|
||||
```
|
||||
`|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|skip_connect~1|skip_connect~2|` represents the structure of a searched architecture. My codes will automatically print it during the searching procedure.
|
||||
|
||||
|
||||
# Citation
|
||||
|
||||
If you find that this project helps your research, please consider citing some of the following papers:
|
||||
```
|
||||
@inproceedings{dong2020nasbench102,
|
||||
title = {NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search},
|
||||
author = {Dong, Xuanyi and Yang, Yi},
|
||||
booktitle = {International Conference on Learning Representations (ICLR)},
|
||||
year = {2020}
|
||||
}
|
||||
@inproceedings{dong2019tas,
|
||||
title = {Network Pruning via Transformable Architecture Search},
|
||||
author = {Dong, Xuanyi and Yang, Yi},
|
||||
|
@ -10,7 +10,36 @@ from models import get_cell_based_tiny_net
|
||||
|
||||
|
||||
|
||||
__all__ = ['evaluate_for_seed']
|
||||
__all__ = ['evaluate_for_seed', 'pure_evaluate']
|
||||
|
||||
|
||||
|
||||
def pure_evaluate(xloader, network, criterion=torch.nn.CrossEntropyLoss()):
|
||||
data_time, batch_time, batch = AverageMeter(), AverageMeter(), None
|
||||
losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
||||
latencies = []
|
||||
network.eval()
|
||||
with torch.no_grad():
|
||||
end = time.time()
|
||||
for i, (inputs, targets) in enumerate(xloader):
|
||||
targets = targets.cuda(non_blocking=True)
|
||||
inputs = inputs.cuda(non_blocking=True)
|
||||
data_time.update(time.time() - end)
|
||||
# forward
|
||||
features, logits = network(inputs)
|
||||
loss = criterion(logits, targets)
|
||||
batch_time.update(time.time() - end)
|
||||
if batch is None or batch == inputs.size(0):
|
||||
batch = inputs.size(0)
|
||||
latencies.append( batch_time.val - data_time.val )
|
||||
# record loss and accuracy
|
||||
prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
|
||||
losses.update(loss.item(), inputs.size(0))
|
||||
top1.update (prec1.item(), inputs.size(0))
|
||||
top5.update (prec5.item(), inputs.size(0))
|
||||
end = time.time()
|
||||
if len(latencies) > 2: latencies = latencies[1:]
|
||||
return losses.avg, top1.avg, top5.avg, latencies
|
||||
|
||||
|
||||
|
||||
|
@ -1,4 +1,6 @@
|
||||
##################################################
|
||||
# NAS-Bench-102 ##################################
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import os, sys, time, torch, random, argparse
|
||||
@ -265,13 +267,14 @@ def generate_meta_info(save_dir, max_node, divide=40):
|
||||
with open(str(script_name), 'w') as cfile:
|
||||
for start in range(0, total_arch, gaps):
|
||||
xend = min(start+gaps, total_arch)
|
||||
cfile.write('{:} python exps/AA-NAS-statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n'.format(macro, start, xend-1))
|
||||
cfile.write('{:} python exps/NAS-Bench-102/statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n'.format(macro, start, xend-1))
|
||||
print ('save the post-processing script into {:}'.format(script_name))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
#mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()]
|
||||
parser = argparse.ArgumentParser(description='Algorithm-Agnostic NAS Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
#parser = argparse.ArgumentParser(description='Algorithm-Agnostic NAS Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser = argparse.ArgumentParser(description='NAS-Bench-102', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--mode' , type=str, required=True, help='The script mode.')
|
||||
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
|
||||
parser.add_argument('--max_node', type=int, help='The maximum node in a cell.')
|
||||
|
295
exps/NAS-Bench-102/statistics.py
Normal file
295
exps/NAS-Bench-102/statistics.py
Normal file
@ -0,0 +1,295 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import os, sys, time, argparse, collections
|
||||
from copy import deepcopy
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from pathlib import Path
|
||||
from collections import defaultdict
|
||||
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||
from config_utils import load_config, dict2config
|
||||
from datasets import get_datasets
|
||||
# NAS-Bench-102 related module or function
|
||||
from models import CellStructure, get_cell_based_tiny_net
|
||||
from nas_102_api import ArchResults, ResultsCount
|
||||
from functions import pure_evaluate
|
||||
|
||||
|
||||
|
||||
def create_result_count(used_seed, dataset, arch_config, results, dataloader_dict):
|
||||
xresult = ResultsCount(dataset, results['net_state_dict'], results['train_acc1es'], results['train_losses'], \
|
||||
results['param'], results['flop'], arch_config, used_seed, results['total_epoch'], None)
|
||||
|
||||
net_config = dict2config({'name': 'infer.tiny', 'C': arch_config['channel'], 'N': arch_config['num_cells'], 'genotype': CellStructure.str2structure(arch_config['arch_str']), 'num_classes':arch_config['class_num']}, None)
|
||||
network = get_cell_based_tiny_net(net_config)
|
||||
network.load_state_dict(xresult.get_net_param())
|
||||
if 'train_times' in results: # new version
|
||||
xresult.update_train_info(results['train_acc1es'], results['train_acc5es'], results['train_losses'], results['train_times'])
|
||||
xresult.update_eval(results['valid_acc1es'], results['valid_losses'], results['valid_times'])
|
||||
else:
|
||||
if dataset == 'cifar10-valid':
|
||||
xresult.update_OLD_eval('x-valid' , results['valid_acc1es'], results['valid_losses'])
|
||||
loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format('cifar10', 'test')], network.cuda())
|
||||
xresult.update_OLD_eval('ori-test', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss})
|
||||
xresult.update_latency(latencies)
|
||||
elif dataset == 'cifar10':
|
||||
xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses'])
|
||||
loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'test')], network.cuda())
|
||||
xresult.update_latency(latencies)
|
||||
elif dataset == 'cifar100' or dataset == 'ImageNet16-120':
|
||||
xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses'])
|
||||
loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'valid')], network.cuda())
|
||||
xresult.update_OLD_eval('x-valid', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss})
|
||||
loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'test')], network.cuda())
|
||||
xresult.update_OLD_eval('x-test' , {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss})
|
||||
xresult.update_latency(latencies)
|
||||
else:
|
||||
raise ValueError('invalid dataset name : {:}'.format(dataset))
|
||||
return xresult
|
||||
|
||||
|
||||
|
||||
def account_one_arch(arch_index, arch_str, checkpoints, datasets, dataloader_dict):
|
||||
information = ArchResults(arch_index, arch_str)
|
||||
|
||||
for checkpoint_path in checkpoints:
|
||||
checkpoint = torch.load(checkpoint_path, map_location='cpu')
|
||||
used_seed = checkpoint_path.name.split('-')[-1].split('.')[0]
|
||||
for dataset in datasets:
|
||||
assert dataset in checkpoint, 'Can not find {:} in arch-{:} from {:}'.format(dataset, arch_index, checkpoint_path)
|
||||
results = checkpoint[dataset]
|
||||
assert results['finish-train'], 'This {:} arch seed={:} does not finish train on {:} ::: {:}'.format(arch_index, used_seed, dataset, checkpoint_path)
|
||||
arch_config = {'channel': results['channel'], 'num_cells': results['num_cells'], 'arch_str': arch_str, 'class_num': results['config']['class_num']}
|
||||
|
||||
xresult = create_result_count(used_seed, dataset, arch_config, results, dataloader_dict)
|
||||
information.update(dataset, int(used_seed), xresult)
|
||||
return information
|
||||
|
||||
|
||||
|
||||
def GET_DataLoaders(workers):
|
||||
|
||||
torch.set_num_threads(workers)
|
||||
|
||||
root_dir = (Path(__file__).parent / '..' / '..').resolve()
|
||||
torch_dir = Path(os.environ['TORCH_HOME'])
|
||||
# cifar
|
||||
cifar_config_path = root_dir / 'configs' / 'nas-benchmark' / 'CIFAR.config'
|
||||
cifar_config = load_config(cifar_config_path, None, None)
|
||||
print ('{:} Create data-loader for all datasets'.format(time_string()))
|
||||
print ('-'*200)
|
||||
TRAIN_CIFAR10, VALID_CIFAR10, xshape, class_num = get_datasets('cifar10', str(torch_dir/'cifar.python'), -1)
|
||||
print ('original CIFAR-10 : {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_CIFAR10), len(VALID_CIFAR10), xshape, class_num))
|
||||
cifar10_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'cifar-split.txt', None, None)
|
||||
assert cifar10_splits.train[:10] == [0, 5, 7, 11, 13, 15, 16, 17, 20, 24] and cifar10_splits.valid[:10] == [1, 2, 3, 4, 6, 8, 9, 10, 12, 14]
|
||||
temp_dataset = deepcopy(TRAIN_CIFAR10)
|
||||
temp_dataset.transform = VALID_CIFAR10.transform
|
||||
# data loader
|
||||
trainval_cifar10_loader = torch.utils.data.DataLoader(TRAIN_CIFAR10, batch_size=cifar_config.batch_size, shuffle=True , num_workers=workers, pin_memory=True)
|
||||
train_cifar10_loader = torch.utils.data.DataLoader(TRAIN_CIFAR10, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.train), num_workers=workers, pin_memory=True)
|
||||
valid_cifar10_loader = torch.utils.data.DataLoader(temp_dataset , batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.valid), num_workers=workers, pin_memory=True)
|
||||
test__cifar10_loader = torch.utils.data.DataLoader(VALID_CIFAR10, batch_size=cifar_config.batch_size, shuffle=False, num_workers=workers, pin_memory=True)
|
||||
print ('CIFAR-10 : trval-loader has {:3d} batch with {:} per batch'.format(len(trainval_cifar10_loader), cifar_config.batch_size))
|
||||
print ('CIFAR-10 : train-loader has {:3d} batch with {:} per batch'.format(len(train_cifar10_loader), cifar_config.batch_size))
|
||||
print ('CIFAR-10 : valid-loader has {:3d} batch with {:} per batch'.format(len(valid_cifar10_loader), cifar_config.batch_size))
|
||||
print ('CIFAR-10 : test--loader has {:3d} batch with {:} per batch'.format(len(test__cifar10_loader), cifar_config.batch_size))
|
||||
print ('-'*200)
|
||||
# CIFAR-100
|
||||
TRAIN_CIFAR100, VALID_CIFAR100, xshape, class_num = get_datasets('cifar100', str(torch_dir/'cifar.python'), -1)
|
||||
print ('original CIFAR-100: {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_CIFAR100), len(VALID_CIFAR100), xshape, class_num))
|
||||
cifar100_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'cifar100-test-split.txt', None, None)
|
||||
assert cifar100_splits.xvalid[:10] == [1, 3, 4, 5, 8, 10, 13, 14, 15, 16] and cifar100_splits.xtest[:10] == [0, 2, 6, 7, 9, 11, 12, 17, 20, 24]
|
||||
train_cifar100_loader = torch.utils.data.DataLoader(TRAIN_CIFAR100, batch_size=cifar_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True)
|
||||
valid_cifar100_loader = torch.utils.data.DataLoader(VALID_CIFAR100, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), num_workers=workers, pin_memory=True)
|
||||
test__cifar100_loader = torch.utils.data.DataLoader(VALID_CIFAR100, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest) , num_workers=workers, pin_memory=True)
|
||||
print ('CIFAR-100 : train-loader has {:3d} batch'.format(len(train_cifar100_loader)))
|
||||
print ('CIFAR-100 : valid-loader has {:3d} batch'.format(len(valid_cifar100_loader)))
|
||||
print ('CIFAR-100 : test--loader has {:3d} batch'.format(len(test__cifar100_loader)))
|
||||
print ('-'*200)
|
||||
|
||||
imagenet16_config_path = 'configs/nas-benchmark/ImageNet-16.config'
|
||||
imagenet16_config = load_config(imagenet16_config_path, None, None)
|
||||
TRAIN_ImageNet16_120, VALID_ImageNet16_120, xshape, class_num = get_datasets('ImageNet16-120', str(torch_dir/'cifar.python'/'ImageNet16'), -1)
|
||||
print ('original TRAIN_ImageNet16_120: {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_ImageNet16_120), len(VALID_ImageNet16_120), xshape, class_num))
|
||||
imagenet_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'imagenet-16-120-test-split.txt', None, None)
|
||||
assert imagenet_splits.xvalid[:10] == [1, 2, 3, 6, 7, 8, 9, 12, 16, 18] and imagenet_splits.xtest[:10] == [0, 4, 5, 10, 11, 13, 14, 15, 17, 20]
|
||||
train_imagenet_loader = torch.utils.data.DataLoader(TRAIN_ImageNet16_120, batch_size=imagenet16_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True)
|
||||
valid_imagenet_loader = torch.utils.data.DataLoader(VALID_ImageNet16_120, batch_size=imagenet16_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xvalid), num_workers=workers, pin_memory=True)
|
||||
test__imagenet_loader = torch.utils.data.DataLoader(VALID_ImageNet16_120, batch_size=imagenet16_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xtest) , num_workers=workers, pin_memory=True)
|
||||
print ('ImageNet-16-120 : train-loader has {:3d} batch with {:} per batch'.format(len(train_imagenet_loader), imagenet16_config.batch_size))
|
||||
print ('ImageNet-16-120 : valid-loader has {:3d} batch with {:} per batch'.format(len(valid_imagenet_loader), imagenet16_config.batch_size))
|
||||
print ('ImageNet-16-120 : test--loader has {:3d} batch with {:} per batch'.format(len(test__imagenet_loader), imagenet16_config.batch_size))
|
||||
|
||||
# 'cifar10', 'cifar100', 'ImageNet16-120'
|
||||
loaders = {'cifar10@trainval': trainval_cifar10_loader,
|
||||
'cifar10@train' : train_cifar10_loader,
|
||||
'cifar10@valid' : valid_cifar10_loader,
|
||||
'cifar10@test' : test__cifar10_loader,
|
||||
'cifar100@train' : train_cifar100_loader,
|
||||
'cifar100@valid' : valid_cifar100_loader,
|
||||
'cifar100@test' : test__cifar100_loader,
|
||||
'ImageNet16-120@train': train_imagenet_loader,
|
||||
'ImageNet16-120@valid': valid_imagenet_loader,
|
||||
'ImageNet16-120@test' : test__imagenet_loader}
|
||||
return loaders
|
||||
|
||||
|
||||
|
||||
def simplify(save_dir, meta_file, basestr, target_dir):
|
||||
meta_infos = torch.load(meta_file, map_location='cpu')
|
||||
meta_archs = meta_infos['archs'] # a list of architecture strings
|
||||
meta_num_archs = meta_infos['total']
|
||||
meta_max_node = meta_infos['max_node']
|
||||
assert meta_num_archs == len(meta_archs), 'invalid number of archs : {:} vs {:}'.format(meta_num_archs, len(meta_archs))
|
||||
|
||||
sub_model_dirs = sorted(list(save_dir.glob('*-*-{:}'.format(basestr))))
|
||||
print ('{:} find {:} directories used to save checkpoints'.format(time_string(), len(sub_model_dirs)))
|
||||
|
||||
subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0
|
||||
num_seeds = defaultdict(lambda: 0)
|
||||
for index, sub_dir in enumerate(sub_model_dirs):
|
||||
xcheckpoints = list(sub_dir.glob('arch-*-seed-*.pth'))
|
||||
arch_indexes = set()
|
||||
for checkpoint in xcheckpoints:
|
||||
temp_names = checkpoint.name.split('-')
|
||||
assert len(temp_names) == 4 and temp_names[0] == 'arch' and temp_names[2] == 'seed', 'invalid checkpoint name : {:}'.format(checkpoint.name)
|
||||
arch_indexes.add( temp_names[1] )
|
||||
subdir2archs[sub_dir] = sorted(list(arch_indexes))
|
||||
num_evaluated_arch += len(arch_indexes)
|
||||
# count number of seeds for each architecture
|
||||
for arch_index in arch_indexes:
|
||||
num_seeds[ len(list(sub_dir.glob('arch-{:}-seed-*.pth'.format(arch_index)))) ] += 1
|
||||
print('{:} There are {:5d} architectures that have been evaluated ({:} in total).'.format(time_string(), num_evaluated_arch, meta_num_archs))
|
||||
for key in sorted( list( num_seeds.keys() ) ): print ('{:} There are {:5d} architectures that are evaluated {:} times.'.format(time_string(), num_seeds[key], key))
|
||||
|
||||
dataloader_dict = GET_DataLoaders( 6 )
|
||||
|
||||
to_save_simply = save_dir / 'simplifies'
|
||||
to_save_allarc = save_dir / 'simplifies' / 'architectures'
|
||||
if not to_save_simply.exists(): to_save_simply.mkdir(parents=True, exist_ok=True)
|
||||
if not to_save_allarc.exists(): to_save_allarc.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
assert (save_dir / target_dir) in subdir2archs, 'can not find {:}'.format(target_dir)
|
||||
arch2infos, datasets = {}, ('cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120')
|
||||
evaluated_indexes = set()
|
||||
target_directory = save_dir / target_dir
|
||||
target_less_dir = save_dir / '{:}-LESS'.format(target_dir)
|
||||
arch_indexes = subdir2archs[ target_directory ]
|
||||
num_seeds = defaultdict(lambda: 0)
|
||||
end_time = time.time()
|
||||
arch_time = AverageMeter()
|
||||
for idx, arch_index in enumerate(arch_indexes):
|
||||
checkpoints = list(target_directory.glob('arch-{:}-seed-*.pth'.format(arch_index)))
|
||||
ckps_less = list(target_less_dir.glob('arch-{:}-seed-*.pth'.format(arch_index)))
|
||||
# create the arch info for each architecture
|
||||
try:
|
||||
arch_info_full = account_one_arch(arch_index, meta_archs[int(arch_index)], checkpoints, datasets, dataloader_dict)
|
||||
arch_info_less = account_one_arch(arch_index, meta_archs[int(arch_index)], ckps_less, ['cifar10-valid'], dataloader_dict)
|
||||
num_seeds[ len(checkpoints) ] += 1
|
||||
except:
|
||||
print('Loading {:} failed, : {:}'.format(arch_index, checkpoints))
|
||||
continue
|
||||
assert int(arch_index) not in evaluated_indexes, 'conflict arch-index : {:}'.format(arch_index)
|
||||
assert 0 <= int(arch_index) < len(meta_archs), 'invalid arch-index {:} (not found in meta_archs)'.format(arch_index)
|
||||
arch_info = {'full': arch_info_full, 'less': arch_info_less}
|
||||
evaluated_indexes.add( int(arch_index) )
|
||||
arch2infos[int(arch_index)] = arch_info
|
||||
torch.save({'full': arch_info_full.state_dict(),
|
||||
'less': arch_info_less.state_dict()}, to_save_allarc / '{:}-FULL.pth'.format(arch_index))
|
||||
arch_info['full'].clear_params()
|
||||
arch_info['less'].clear_params()
|
||||
torch.save({'full': arch_info_full.state_dict(),
|
||||
'less': arch_info_less.state_dict()}, to_save_allarc / '{:}-SIMPLE.pth'.format(arch_index))
|
||||
# measure elapsed time
|
||||
arch_time.update(time.time() - end_time)
|
||||
end_time = time.time()
|
||||
need_time = '{:}'.format( convert_secs2time(arch_time.avg * (len(arch_indexes)-idx-1), True) )
|
||||
print('{:} {:} [{:03d}/{:03d}] : {:} still need {:}'.format(time_string(), target_dir, idx, len(arch_indexes), arch_index, need_time))
|
||||
# measure time
|
||||
xstrs = ['{:}:{:03d}'.format(key, num_seeds[key]) for key in sorted( list( num_seeds.keys() ) ) ]
|
||||
print('{:} {:} done : {:}'.format(time_string(), target_dir, xstrs))
|
||||
final_infos = {'meta_archs' : meta_archs,
|
||||
'total_archs': meta_num_archs,
|
||||
'basestr' : basestr,
|
||||
'arch2infos' : arch2infos,
|
||||
'evaluated_indexes': evaluated_indexes}
|
||||
save_file_name = to_save_simply / '{:}.pth'.format(target_dir)
|
||||
torch.save(final_infos, save_file_name)
|
||||
print ('Save {:} / {:} architecture results into {:}.'.format(len(evaluated_indexes), meta_num_archs, save_file_name))
|
||||
|
||||
|
||||
|
||||
def merge_all(save_dir, meta_file, basestr):
|
||||
meta_infos = torch.load(meta_file, map_location='cpu')
|
||||
meta_archs = meta_infos['archs']
|
||||
meta_num_archs = meta_infos['total']
|
||||
meta_max_node = meta_infos['max_node']
|
||||
assert meta_num_archs == len(meta_archs), 'invalid number of archs : {:} vs {:}'.format(meta_num_archs, len(meta_archs))
|
||||
|
||||
sub_model_dirs = sorted(list(save_dir.glob('*-*-{:}'.format(basestr))))
|
||||
print ('{:} find {:} directories used to save checkpoints'.format(time_string(), len(sub_model_dirs)))
|
||||
for index, sub_dir in enumerate(sub_model_dirs):
|
||||
arch_info_files = sorted( list(sub_dir.glob('arch-*-seed-*.pth') ) )
|
||||
print ('The {:02d}/{:02d}-th directory : {:} : {:} runs.'.format(index, len(sub_model_dirs), sub_dir, len(arch_info_files)))
|
||||
|
||||
arch2infos, evaluated_indexes = dict(), set()
|
||||
for IDX, sub_dir in enumerate(sub_model_dirs):
|
||||
ckp_path = sub_dir.parent / 'simplifies' / '{:}.pth'.format(sub_dir.name)
|
||||
if ckp_path.exists():
|
||||
sub_ckps = torch.load(ckp_path, map_location='cpu')
|
||||
assert sub_ckps['total_archs'] == meta_num_archs and sub_ckps['basestr'] == basestr
|
||||
xarch2infos = sub_ckps['arch2infos']
|
||||
xevalindexs = sub_ckps['evaluated_indexes']
|
||||
for eval_index in xevalindexs:
|
||||
assert eval_index not in evaluated_indexes and eval_index not in arch2infos
|
||||
#arch2infos[eval_index] = xarch2infos[eval_index].state_dict()
|
||||
arch2infos[eval_index] = {'full': xarch2infos[eval_index]['full'].state_dict(),
|
||||
'less': xarch2infos[eval_index]['less'].state_dict()}
|
||||
evaluated_indexes.add( eval_index )
|
||||
print ('{:} [{:03d}/{:03d}] merge data from {:} with {:} models.'.format(time_string(), IDX, len(sub_model_dirs), ckp_path, len(xevalindexs)))
|
||||
else:
|
||||
raise ValueError('Can not find {:}'.format(ckp_path))
|
||||
#print ('{:} [{:03d}/{:03d}] can not find {:}, skip.'.format(time_string(), IDX, len(subdir2archs), ckp_path))
|
||||
|
||||
evaluated_indexes = sorted( list( evaluated_indexes ) )
|
||||
print ('Finally, there are {:} architectures that have been trained and evaluated.'.format(len(evaluated_indexes)))
|
||||
|
||||
to_save_simply = save_dir / 'simplifies'
|
||||
if not to_save_simply.exists(): to_save_simply.mkdir(parents=True, exist_ok=True)
|
||||
final_infos = {'meta_archs' : meta_archs,
|
||||
'total_archs': meta_num_archs,
|
||||
'arch2infos' : arch2infos,
|
||||
'evaluated_indexes': evaluated_indexes}
|
||||
save_file_name = to_save_simply / '{:}-final-infos.pth'.format(basestr)
|
||||
torch.save(final_infos, save_file_name)
|
||||
print ('Save {:} / {:} architecture results into {:}.'.format(len(evaluated_indexes), meta_num_archs, save_file_name))
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
parser = argparse.ArgumentParser(description='NAS-BENCH-102', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--mode' , type=str, choices=['cal', 'merge'], help='The running mode for this script.')
|
||||
parser.add_argument('--base_save_dir', type=str, default='./output/NAS-BENCH-102-4', help='The base-name of folder to save checkpoints and log.')
|
||||
parser.add_argument('--target_dir' , type=str, help='The target directory.')
|
||||
parser.add_argument('--max_node' , type=int, default=4, help='The maximum node in a cell.')
|
||||
parser.add_argument('--channel' , type=int, default=16, help='The number of channels.')
|
||||
parser.add_argument('--num_cells' , type=int, default=5, help='The number of cells in one stage.')
|
||||
args = parser.parse_args()
|
||||
|
||||
save_dir = Path( args.base_save_dir )
|
||||
meta_path = save_dir / 'meta-node-{:}.pth'.format(args.max_node)
|
||||
assert save_dir.exists(), 'invalid save dir path : {:}'.format(save_dir)
|
||||
assert meta_path.exists(), 'invalid saved meta path : {:}'.format(meta_path)
|
||||
print ('start the statistics of our nas-benchmark from {:} using {:}.'.format(save_dir, args.target_dir))
|
||||
basestr = 'C{:}-N{:}'.format(args.channel, args.num_cells)
|
||||
|
||||
if args.mode == 'cal':
|
||||
simplify(save_dir, meta_path, basestr, args.target_dir)
|
||||
elif args.mode == 'merge':
|
||||
merge_all(save_dir, meta_path, basestr)
|
||||
else:
|
||||
raise ValueError('invalid mode : {:}'.format(args.mode))
|
@ -17,7 +17,7 @@ from datasets import get_datasets, SearchDataset
|
||||
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
|
||||
from utils import get_model_infos, obtain_accuracy
|
||||
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||
from aa_nas_api import AANASBenchAPI
|
||||
from nas_102_api import NASBench102API as API
|
||||
from models import CellStructure, get_search_spaces
|
||||
from R_EA import train_and_eval
|
||||
# BOHB: Robust and Efficient Hyperparameter Optimization at Scale, ICML 2018
|
||||
@ -112,7 +112,7 @@ def main(xargs, nas_bench):
|
||||
num_workers = 1
|
||||
|
||||
#nas_bench = AANASBenchAPI(xargs.arch_nas_dataset)
|
||||
logger.log('{:} Create AA-NAS-BENCH-API DONE'.format(time_string()))
|
||||
#logger.log('{:} Create NAS-BENCH-API DONE'.format(time_string()))
|
||||
workers = []
|
||||
for i in range(num_workers):
|
||||
w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, nas_bench=nas_bench, run_id=hb_run_id, id=i)
|
||||
@ -179,7 +179,7 @@ if __name__ == '__main__':
|
||||
nas_bench = None
|
||||
else:
|
||||
print ('{:} build NAS-Benchmark-API from {:}'.format(time_string(), args.arch_nas_dataset))
|
||||
nas_bench = AANASBenchAPI(args.arch_nas_dataset)
|
||||
nas_bench = API(args.arch_nas_dataset)
|
||||
if args.rand_seed < 0:
|
||||
save_dir, all_indexes, num = None, [], 500
|
||||
for i in range(num):
|
||||
|
@ -15,7 +15,7 @@ from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_che
|
||||
from utils import get_model_infos, obtain_accuracy
|
||||
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||
from models import get_search_spaces
|
||||
from aa_nas_api import AANASBenchAPI
|
||||
from nas_102_api import NASBench102API as API
|
||||
from R_EA import train_and_eval, random_architecture_func
|
||||
|
||||
|
||||
@ -92,7 +92,7 @@ if __name__ == '__main__':
|
||||
nas_bench = None
|
||||
else:
|
||||
print ('{:} build NAS-Benchmark-API from {:}'.format(time_string(), args.arch_nas_dataset))
|
||||
nas_bench = AANASBenchAPI(args.arch_nas_dataset)
|
||||
nas_bench = API(args.arch_nas_dataset)
|
||||
if args.rand_seed < 0:
|
||||
save_dir, all_indexes, num = None, [], 500
|
||||
for i in range(num):
|
||||
|
@ -16,7 +16,7 @@ from datasets import get_datasets, SearchDataset
|
||||
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
|
||||
from utils import get_model_infos, obtain_accuracy
|
||||
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||
from aa_nas_api import AANASBenchAPI
|
||||
from nas_102_api import NASBench102API as API
|
||||
from models import CellStructure, get_search_spaces
|
||||
|
||||
|
||||
@ -230,7 +230,7 @@ if __name__ == '__main__':
|
||||
nas_bench = None
|
||||
else:
|
||||
print ('{:} build NAS-Benchmark-API from {:}'.format(time_string(), args.arch_nas_dataset))
|
||||
nas_bench = AANASBenchAPI(args.arch_nas_dataset)
|
||||
nas_bench = API(args.arch_nas_dataset)
|
||||
if args.rand_seed < 0:
|
||||
save_dir, all_indexes, num = None, [], 500
|
||||
for i in range(num):
|
||||
|
@ -17,7 +17,7 @@ from datasets import get_datasets, SearchDataset
|
||||
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
|
||||
from utils import get_model_infos, obtain_accuracy
|
||||
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||
from aa_nas_api import AANASBenchAPI
|
||||
from nas_102_api import NASBench102API
|
||||
from models import CellStructure, get_search_spaces
|
||||
from R_EA import train_and_eval
|
||||
|
||||
|
27
exps/vis/test.py
Normal file
27
exps/vis/test.py
Normal file
@ -0,0 +1,27 @@
|
||||
# python ./exps/vis/test.py
|
||||
import os, sys
|
||||
from pathlib import Path
|
||||
import torch
|
||||
import numpy as np
|
||||
from collections import OrderedDict
|
||||
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||
|
||||
|
||||
def test_nas_api():
|
||||
from nas_102_api import ArchResults
|
||||
xdata = torch.load('/home/dxy/FOR-RELEASE/NAS-Projects/output/NAS-BENCH-102-4/simplifies/architectures/000157-FULL.pth')
|
||||
for key in ['full', 'less']:
|
||||
print ('\n------------------------- {:} -------------------------'.format(key))
|
||||
archRes = ArchResults.create_from_state_dict(xdata[key])
|
||||
print(archRes)
|
||||
print(archRes.arch_idx_str())
|
||||
print(archRes.get_dataset_names())
|
||||
print(archRes.get_comput_costs('cifar10-valid'))
|
||||
# get the metrics
|
||||
print(archRes.get_metrics('cifar10-valid', 'x-valid', None, False))
|
||||
print(archRes.get_metrics('cifar10-valid', 'x-valid', None, True))
|
||||
print(archRes.query('cifar10-valid', 777))
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_nas_api()
|
@ -1,5 +1,5 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
from .api import AANASBenchAPI
|
||||
from .api import NASBench102API
|
||||
from .api import ArchResults, ResultsCount
|
@ -2,7 +2,7 @@
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import os, sys, copy, random, torch, numpy as np
|
||||
from collections import OrderedDict
|
||||
from collections import OrderedDict, defaultdict
|
||||
|
||||
|
||||
def print_information(information, extra_info=None, show=False):
|
||||
@ -30,16 +30,17 @@ def print_information(information, extra_info=None, show=False):
|
||||
return strings
|
||||
|
||||
|
||||
class AANASBenchAPI(object):
|
||||
class NASBench102API(object):
|
||||
|
||||
def __init__(self, file_path_or_dict, verbose=True):
|
||||
if isinstance(file_path_or_dict, str):
|
||||
if verbose: print('try to create AA-NAS-Bench api from {:}'.format(file_path_or_dict))
|
||||
if verbose: print('try to create NAS-Bench-102 api from {:}'.format(file_path_or_dict))
|
||||
assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict)
|
||||
file_path_or_dict = torch.load(file_path_or_dict)
|
||||
else:
|
||||
file_path_or_dict = copy.deepcopy( file_path_or_dict )
|
||||
assert isinstance(file_path_or_dict, dict), 'It should be a dict instead of {:}'.format(type(file_path_or_dict))
|
||||
import pdb; pdb.set_trace() # we will update this api soon
|
||||
keys = ('meta_archs', 'arch2infos', 'evaluated_indexes')
|
||||
for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key)
|
||||
self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] )
|
||||
@ -144,27 +145,46 @@ class ArchResults(object):
|
||||
def get_comput_costs(self, dataset):
|
||||
x_seeds = self.dataset_seed[dataset]
|
||||
results = [self.all_results[ (dataset, seed) ] for seed in x_seeds]
|
||||
flops = [result.flop for result in results]
|
||||
params = [result.params for result in results]
|
||||
|
||||
flops = [result.flop for result in results]
|
||||
params = [result.params for result in results]
|
||||
lantencies = [result.get_latency() for result in results]
|
||||
return np.mean(flops), np.mean(params), np.mean(lantencies)
|
||||
lantencies = [x for x in lantencies if x > 0]
|
||||
mean_latency = np.mean(lantencies) if len(lantencies) > 0 else None
|
||||
time_infos = defaultdict(list)
|
||||
for result in results:
|
||||
time_info = result.get_times()
|
||||
for key, value in time_info.items(): time_infos[key].append( value )
|
||||
|
||||
info = {'flops' : np.mean(flops),
|
||||
'params' : np.mean(params),
|
||||
'latency': mean_latency}
|
||||
for key, value in time_infos.items():
|
||||
if len(value) > 0 and value[0] is not None:
|
||||
info[key] = np.mean(value)
|
||||
else: info[key] = None
|
||||
return info
|
||||
|
||||
def get_metrics(self, dataset, setname, iepoch=None, is_random=False):
|
||||
x_seeds = self.dataset_seed[dataset]
|
||||
results = [self.all_results[ (dataset, seed) ] for seed in x_seeds]
|
||||
loss, accuracy = [], []
|
||||
infos = defaultdict(list)
|
||||
for result in results:
|
||||
if setname == 'train':
|
||||
info = result.get_train(iepoch)
|
||||
else:
|
||||
info = result.get_eval(setname, iepoch)
|
||||
loss.append( info['loss'] )
|
||||
accuracy.append( info['accuracy'] )
|
||||
for key, value in info.items(): infos[key].append( value )
|
||||
return_info = dict()
|
||||
if is_random:
|
||||
index = random.randint(0, len(loss)-1)
|
||||
return loss[index], accuracy[index]
|
||||
index = random.randint(0, len(results)-1)
|
||||
for key, value in infos.items(): return_info[key] = value[index]
|
||||
else:
|
||||
return float(np.mean(loss)), float(np.mean(accuracy))
|
||||
for key, value in infos.items():
|
||||
if len(value) > 0 and value[0] is not None:
|
||||
return_info[key] = np.mean(value)
|
||||
else: return_info[key] = None
|
||||
return return_info
|
||||
|
||||
def show(self, is_print=False):
|
||||
return print_information(self, None, is_print)
|
||||
@ -245,8 +265,10 @@ class ResultsCount(object):
|
||||
def __init__(self, name, state_dict, train_accs, train_losses, params, flop, arch_config, seed, epochs, latency):
|
||||
self.name = name
|
||||
self.net_state_dict = state_dict
|
||||
self.train_accs = copy.deepcopy(train_accs)
|
||||
self.train_acc1es = copy.deepcopy(train_accs)
|
||||
self.train_acc5es = None
|
||||
self.train_losses = copy.deepcopy(train_losses)
|
||||
self.train_times = None
|
||||
self.arch_config = copy.deepcopy(arch_config)
|
||||
self.params = params
|
||||
self.flop = flop
|
||||
@ -256,44 +278,97 @@ class ResultsCount(object):
|
||||
# evaluation results
|
||||
self.reset_eval()
|
||||
|
||||
def update_train_info(self, train_acc1es, train_acc5es, train_losses, train_times):
|
||||
self.train_acc1es = train_acc1es
|
||||
self.train_acc5es = train_acc5es
|
||||
self.train_losses = train_losses
|
||||
self.train_times = train_times
|
||||
|
||||
def reset_eval(self):
|
||||
self.eval_names = []
|
||||
self.eval_accs = {}
|
||||
self.eval_acc1es = {}
|
||||
self.eval_times = {}
|
||||
self.eval_losses = {}
|
||||
|
||||
def update_latency(self, latency):
|
||||
self.latency = copy.deepcopy( latency )
|
||||
|
||||
def update_eval(self, accs, losses, times): # old version
|
||||
data_names = set([x.split('@')[0] for x in accs.keys()])
|
||||
for data_name in data_names:
|
||||
assert data_name not in self.eval_names, '{:} has already been added into eval-names'.format(data_name)
|
||||
self.eval_names.append( data_name )
|
||||
for iepoch in range(self.epochs):
|
||||
xkey = '{:}@{:}'.format(data_name, iepoch)
|
||||
self.eval_acc1es[ xkey ] = accs[ xkey ]
|
||||
self.eval_losses[ xkey ] = losses[ xkey ]
|
||||
self.eval_times [ xkey ] = times[ xkey ]
|
||||
|
||||
def update_OLD_eval(self, name, accs, losses): # old version
|
||||
assert name not in self.eval_names, '{:} has already added'.format(name)
|
||||
self.eval_names.append( name )
|
||||
for iepoch in range(self.epochs):
|
||||
if iepoch in accs:
|
||||
self.eval_acc1es['{:}@{:}'.format(name,iepoch)] = accs[iepoch]
|
||||
self.eval_losses['{:}@{:}'.format(name,iepoch)] = losses[iepoch]
|
||||
|
||||
def __repr__(self):
|
||||
num_eval = len(self.eval_names)
|
||||
set_name = '[' + ', '.join(self.eval_names) + ']'
|
||||
return ('{name}({xname}, arch={arch}, FLOP={flop:.2f}M, Param={param:.3f}MB, seed={seed}, {num_eval} eval-sets: {set_name})'.format(name=self.__class__.__name__, xname=self.name, arch=self.arch_config['arch_str'], flop=self.flop, param=self.params, seed=self.seed, num_eval=num_eval, set_name=set_name))
|
||||
|
||||
def get_latency(self):
|
||||
if self.latency is None: return -1
|
||||
else: return sum(self.latency) / len(self.latency)
|
||||
|
||||
def update_eval(self, name, accs, losses):
|
||||
assert name not in self.eval_names, '{:} has already added'.format(name)
|
||||
self.eval_names.append( name )
|
||||
self.eval_accs[name] = copy.deepcopy( accs )
|
||||
self.eval_losses[name] = copy.deepcopy( losses )
|
||||
def get_times(self):
|
||||
if self.train_times is not None and isinstance(self.train_times, dict):
|
||||
train_times = list( self.train_times.values() )
|
||||
time_info = {'T-train@epoch': np.mean(train_times), 'T-train@total': np.sum(train_times)}
|
||||
for name in self.eval_names:
|
||||
xtimes = [self.eval_times['{:}@{:}'.format(name,i)] for i in range(self.epochs)]
|
||||
time_info['T-{:}@epoch'.format(name)] = np.mean(xtimes)
|
||||
time_info['T-{:}@total'.format(name)] = np.sum(xtimes)
|
||||
else:
|
||||
time_info = {'T-train@epoch': None, 'T-train@total': None }
|
||||
for name in self.eval_names:
|
||||
time_info['T-{:}@epoch'.format(name)] = None
|
||||
time_info['T-{:}@total'.format(name)] = None
|
||||
return time_info
|
||||
|
||||
def __repr__(self):
|
||||
num_eval = len(self.eval_names)
|
||||
return ('{name}({xname}, arch={arch}, FLOP={flop:.2f}M, Param={param:.3f}MB, seed={seed}, {num_eval} eval-sets)'.format(name=self.__class__.__name__, xname=self.name, arch=self.arch_config['arch_str'], flop=self.flop, param=self.params, seed=self.seed, num_eval=num_eval))
|
||||
|
||||
def valid_evaluation_set(self):
|
||||
def get_eval_set(self):
|
||||
return self.eval_names
|
||||
|
||||
def get_train(self, iepoch=None):
|
||||
if iepoch is None: iepoch = self.epochs-1
|
||||
assert 0 <= iepoch < self.epochs, 'invalid iepoch={:} < {:}'.format(iepoch, self.epochs)
|
||||
return {'loss': self.train_losses[iepoch], 'accuracy': self.train_accs[iepoch]}
|
||||
if self.train_times is not None: xtime = self.train_times[iepoch]
|
||||
else : xtime = None
|
||||
return {'iepoch' : iepoch,
|
||||
'loss' : self.train_losses[iepoch],
|
||||
'accuracy': self.train_acc1es[iepoch],
|
||||
'time' : xtime}
|
||||
|
||||
def get_eval(self, name, iepoch=None):
|
||||
if iepoch is None: iepoch = self.epochs-1
|
||||
assert 0 <= iepoch < self.epochs, 'invalid iepoch={:} < {:}'.format(iepoch, self.epochs)
|
||||
return {'loss': self.eval_losses[name][iepoch], 'accuracy': self.eval_accs[name][iepoch]}
|
||||
if isinstance(self.eval_times,dict) and len(self.eval_times) > 0:
|
||||
xtime = self.eval_times['{:}@{:}'.format(name,iepoch)]
|
||||
else: xtime = None
|
||||
return {'iepoch' : iepoch,
|
||||
'loss' : self.eval_losses['{:}@{:}'.format(name,iepoch)],
|
||||
'accuracy': self.eval_acc1es['{:}@{:}'.format(name,iepoch)],
|
||||
'time' : xtime}
|
||||
|
||||
def get_net_param(self):
|
||||
return self.net_state_dict
|
||||
|
||||
def get_config(self, str2structure):
|
||||
#return copy.deepcopy(self.arch_config)
|
||||
return {'name': 'infer.tiny', 'C': self.arch_config['channel'], \
|
||||
'N' : self.arch_config['num_cells'], \
|
||||
'genotype': str2structure(self.arch_config['arch_str']), 'num_classes': self.arch_config['class_num']}
|
||||
|
||||
def state_dict(self):
|
||||
_state_dict = {key: value for key, value in self.__dict__.items()}
|
||||
return _state_dict
|
Loading…
Reference in New Issue
Block a user