2020-07-06 00:29:26 +02:00
|
|
|
#####################################################
|
|
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
|
|
|
|
###########################################################################################################################################################
|
|
|
|
# Before run these commands, the files must be properly put.
|
|
|
|
#
|
|
|
|
# CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space sss --base_path $HOME/.torch/NAS-Bench-301-v1_0 --dataset cifar10
|
|
|
|
# CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space sss --base_path $HOME/.torch/NAS-Bench-301-v1_0 --dataset cifar100
|
|
|
|
# CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space sss --base_path $HOME/.torch/NAS-Bench-301-v1_0 --dataset ImageNet16-120
|
2020-07-06 01:14:15 +02:00
|
|
|
# CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space tss --base_path $HOME/.torch/NAS-Bench-201-v1_1 --dataset cifar10
|
2020-07-06 00:29:26 +02:00
|
|
|
###########################################################################################################################################################
|
|
|
|
import os, gc, sys, math, argparse, psutil
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
from pathlib import Path
|
|
|
|
from collections import OrderedDict
|
|
|
|
import matplotlib
|
|
|
|
import seaborn as sns
|
|
|
|
matplotlib.use('agg')
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
|
|
|
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
|
|
|
from log_utils import time_string
|
2020-07-30 15:07:11 +02:00
|
|
|
from nats_bench import create
|
2020-07-06 00:29:26 +02:00
|
|
|
from models import get_cell_based_tiny_net
|
|
|
|
from utils import weight_watcher
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
def get_cor(A, B):
|
|
|
|
return float(np.corrcoef(A, B)[0,1])
|
|
|
|
|
|
|
|
|
|
|
|
def tostr(accdict, norms):
|
|
|
|
xstr = []
|
|
|
|
for key, accs in accdict.items():
|
|
|
|
cor = get_cor(accs, norms)
|
|
|
|
xstr.append('{:}: {:.3f}'.format(key, cor))
|
|
|
|
return ' '.join(xstr)
|
|
|
|
"""
|
|
|
|
|
|
|
|
def evaluate(api, weight_dir, data: str):
|
|
|
|
print('\nEvaluate dataset={:}'.format(data))
|
|
|
|
process = psutil.Process(os.getpid())
|
|
|
|
norms, accuracies = [], []
|
|
|
|
ok, total = 0, 5000
|
|
|
|
for idx in range(total):
|
|
|
|
arch_index = api.random()
|
|
|
|
api.reload(weight_dir, arch_index)
|
|
|
|
# compute the weight watcher results
|
|
|
|
config = api.get_net_config(arch_index, data)
|
|
|
|
net = get_cell_based_tiny_net(config)
|
2020-07-30 15:07:11 +02:00
|
|
|
meta_info = api.query_meta_info_by_index(arch_index, hp='200' if api.search_space_name == 'topology' else '90')
|
|
|
|
params = meta_info.get_net_param(data, 888 if api.search_space_name == 'topology' else 777)
|
2020-07-06 00:29:26 +02:00
|
|
|
with torch.no_grad():
|
|
|
|
net.load_state_dict(params)
|
|
|
|
_, summary = weight_watcher.analyze(net, alphas=False)
|
|
|
|
if 'lognorm' not in summary:
|
|
|
|
api.clear_params(arch_index, None)
|
|
|
|
del net ; continue
|
|
|
|
continue
|
|
|
|
cur_norm = -summary['lognorm']
|
|
|
|
api.clear_params(arch_index, None)
|
|
|
|
if math.isnan(cur_norm):
|
|
|
|
del net, meta_info
|
|
|
|
continue
|
|
|
|
else:
|
|
|
|
ok += 1
|
|
|
|
norms.append(cur_norm)
|
|
|
|
# query the accuracy
|
2020-07-30 15:07:11 +02:00
|
|
|
info = meta_info.get_metrics(data, 'ori-test', iepoch=None, is_random=888 if api.search_space_name == 'topology' else 777)
|
2020-07-06 00:29:26 +02:00
|
|
|
accuracies.append(info['accuracy'])
|
|
|
|
del net, meta_info
|
|
|
|
# print the information
|
|
|
|
if idx % 20 == 0:
|
|
|
|
gc.collect()
|
|
|
|
print('{:} {:04d}_{:04d}/{:04d} ({:.2f} MB memory)'.format(time_string(), ok, idx, total, process.memory_info().rss / 1e6))
|
|
|
|
return norms, accuracies
|
|
|
|
|
|
|
|
|
|
|
|
def main(search_space, meta_file: str, weight_dir, save_dir, xdata):
|
|
|
|
save_dir.mkdir(parents=True, exist_ok=True)
|
2020-07-30 15:07:11 +02:00
|
|
|
api = create(meta_file, search_space, verbose=False)
|
2020-07-06 00:29:26 +02:00
|
|
|
datasets = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120']
|
|
|
|
print(time_string() + ' ' + '='*50)
|
|
|
|
for data in datasets:
|
|
|
|
hps = api.avaliable_hps
|
|
|
|
for hp in hps:
|
|
|
|
nums = api.statistics(data, hp=hp)
|
|
|
|
total = sum([k*v for k, v in nums.items()])
|
|
|
|
print('Using {:3s} epochs, trained on {:20s} : {:} trials in total ({:}).'.format(hp, data, total, nums))
|
|
|
|
print(time_string() + ' ' + '='*50)
|
|
|
|
|
|
|
|
norms, accuracies = evaluate(api, weight_dir, xdata)
|
|
|
|
|
|
|
|
indexes = list(range(len(norms)))
|
|
|
|
norm_indexes = sorted(indexes, key=lambda i: norms[i])
|
|
|
|
accy_indexes = sorted(indexes, key=lambda i: accuracies[i])
|
|
|
|
labels = []
|
|
|
|
for index in norm_indexes:
|
|
|
|
labels.append(accy_indexes.index(index))
|
|
|
|
|
|
|
|
dpi, width, height = 200, 1400, 800
|
|
|
|
figsize = width / float(dpi), height / float(dpi)
|
|
|
|
LabelSize, LegendFontsize = 18, 12
|
|
|
|
resnet_scale, resnet_alpha = 120, 0.5
|
|
|
|
|
|
|
|
fig = plt.figure(figsize=figsize)
|
|
|
|
ax = fig.add_subplot(111)
|
|
|
|
plt.xlim(min(indexes), max(indexes))
|
|
|
|
plt.ylim(min(indexes), max(indexes))
|
|
|
|
# plt.ylabel('y').set_rotation(30)
|
|
|
|
plt.yticks(np.arange(min(indexes), max(indexes), max(indexes)//3), fontsize=LegendFontsize, rotation='vertical')
|
|
|
|
plt.xticks(np.arange(min(indexes), max(indexes), max(indexes)//5), fontsize=LegendFontsize)
|
|
|
|
ax.scatter(indexes, labels , marker='*', s=0.5, c='tab:red' , alpha=0.8)
|
|
|
|
ax.scatter(indexes, indexes, marker='o', s=0.5, c='tab:blue' , alpha=0.8)
|
|
|
|
ax.scatter([-1], [-1], marker='o', s=100, c='tab:blue' , label='Test accuracy')
|
|
|
|
ax.scatter([-1], [-1], marker='*', s=100, c='tab:red' , label='Weight watcher')
|
|
|
|
plt.grid(zorder=0)
|
|
|
|
ax.set_axisbelow(True)
|
|
|
|
plt.legend(loc=0, fontsize=LegendFontsize)
|
|
|
|
ax.set_xlabel('architecture ranking sorted by the test accuracy ', fontsize=LabelSize)
|
|
|
|
ax.set_ylabel('architecture ranking computed by weight watcher', fontsize=LabelSize)
|
|
|
|
save_path = (save_dir / '{:}-{:}-test-ww.pdf'.format(search_space, xdata)).resolve()
|
|
|
|
fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf')
|
|
|
|
save_path = (save_dir / '{:}-{:}-test-ww.png'.format(search_space, xdata)).resolve()
|
|
|
|
fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png')
|
|
|
|
print ('{:} save into {:}'.format(time_string(), save_path))
|
|
|
|
|
|
|
|
print('{:} finish this test.'.format(time_string()))
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = argparse.ArgumentParser("Analysis of NAS-Bench-201")
|
|
|
|
parser.add_argument('--save_dir', type=str, default='./output/vis-nas-bench/', help='The base-name of folder to save checkpoints and log.')
|
|
|
|
parser.add_argument('--search_space', type=str, default=None, choices=['tss', 'sss'], help='The search space.')
|
|
|
|
parser.add_argument('--base_path', type=str, default=None, help='The path to the NAS-Bench-201 benchmark file and weight dir.')
|
|
|
|
parser.add_argument('--dataset' , type=str, default=None, help='.')
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
save_dir = Path(args.save_dir)
|
|
|
|
save_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
meta_file = Path(args.base_path + '.pth')
|
|
|
|
weight_dir = Path(args.base_path + '-archive')
|
|
|
|
assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file)
|
|
|
|
assert weight_dir.exists() and weight_dir.is_dir(), 'invalid path for weight dir : {:}'.format(weight_dir)
|
|
|
|
|
|
|
|
main(args.search_space, str(meta_file), weight_dir, save_dir, args.dataset)
|
|
|
|
|