2019-12-20 10:41:49 +01:00
|
|
|
# python ./exps/vis/test.py
|
2020-01-02 04:35:58 +01:00
|
|
|
import os, sys, random
|
2019-12-20 10:41:49 +01:00
|
|
|
from pathlib import Path
|
2020-01-09 12:26:23 +01:00
|
|
|
from copy import deepcopy
|
2019-12-20 10:41:49 +01:00
|
|
|
import torch
|
|
|
|
import numpy as np
|
|
|
|
from collections import OrderedDict
|
|
|
|
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
|
|
|
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
|
|
|
|
2020-01-09 12:26:23 +01:00
|
|
|
from nas_102_api import NASBench102API as API
|
2019-12-20 10:41:49 +01:00
|
|
|
|
|
|
|
def test_nas_api():
|
|
|
|
from nas_102_api import ArchResults
|
|
|
|
xdata = torch.load('/home/dxy/FOR-RELEASE/NAS-Projects/output/NAS-BENCH-102-4/simplifies/architectures/000157-FULL.pth')
|
|
|
|
for key in ['full', 'less']:
|
|
|
|
print ('\n------------------------- {:} -------------------------'.format(key))
|
|
|
|
archRes = ArchResults.create_from_state_dict(xdata[key])
|
|
|
|
print(archRes)
|
|
|
|
print(archRes.arch_idx_str())
|
|
|
|
print(archRes.get_dataset_names())
|
|
|
|
print(archRes.get_comput_costs('cifar10-valid'))
|
|
|
|
# get the metrics
|
|
|
|
print(archRes.get_metrics('cifar10-valid', 'x-valid', None, False))
|
|
|
|
print(archRes.get_metrics('cifar10-valid', 'x-valid', None, True))
|
|
|
|
print(archRes.query('cifar10-valid', 777))
|
|
|
|
|
2020-01-02 04:35:58 +01:00
|
|
|
|
|
|
|
OPS = ['skip-connect', 'conv-1x1', 'conv-3x3', 'pool-3x3']
|
|
|
|
COLORS = ['chartreuse' , 'cyan' , 'navyblue', 'chocolate1']
|
|
|
|
|
|
|
|
def plot(filename):
|
2020-01-05 12:19:38 +01:00
|
|
|
from graphviz import Digraph
|
2020-01-02 04:35:58 +01:00
|
|
|
g = Digraph(
|
|
|
|
format='png',
|
|
|
|
edge_attr=dict(fontsize='20', fontname="times"),
|
|
|
|
node_attr=dict(style='filled', shape='rect', align='center', fontsize='20', height='0.5', width='0.5', penwidth='2', fontname="times"),
|
|
|
|
engine='dot')
|
|
|
|
g.body.extend(['rankdir=LR'])
|
|
|
|
|
|
|
|
steps = 5
|
|
|
|
for i in range(0, steps):
|
|
|
|
if i == 0:
|
|
|
|
g.node(str(i), fillcolor='darkseagreen2')
|
|
|
|
elif i+1 == steps:
|
|
|
|
g.node(str(i), fillcolor='palegoldenrod')
|
|
|
|
else: g.node(str(i), fillcolor='lightblue')
|
|
|
|
|
|
|
|
for i in range(1, steps):
|
|
|
|
for xin in range(i):
|
|
|
|
op_i = random.randint(0, len(OPS)-1)
|
|
|
|
#g.edge(str(xin), str(i), label=OPS[op_i], fillcolor=COLORS[op_i])
|
|
|
|
g.edge(str(xin), str(i), label=OPS[op_i], color=COLORS[op_i], fillcolor=COLORS[op_i])
|
|
|
|
#import pdb; pdb.set_trace()
|
|
|
|
g.render(filename, cleanup=True, view=False)
|
|
|
|
|
|
|
|
|
2020-01-05 12:19:38 +01:00
|
|
|
def test_auto_grad():
|
|
|
|
class Net(torch.nn.Module):
|
|
|
|
def __init__(self, iS):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
self.layer = torch.nn.Linear(iS, 1)
|
|
|
|
def forward(self, inputs):
|
|
|
|
outputs = self.layer(inputs)
|
|
|
|
outputs = torch.exp(outputs)
|
|
|
|
return outputs.mean()
|
|
|
|
net = Net(10)
|
|
|
|
inputs = torch.rand(256, 10)
|
|
|
|
loss = net(inputs)
|
|
|
|
first_order_grads = torch.autograd.grad(loss, net.parameters(), retain_graph=True, create_graph=True)
|
|
|
|
first_order_grads = torch.cat([x.view(-1) for x in first_order_grads])
|
|
|
|
second_order_grads = []
|
|
|
|
for grads in first_order_grads:
|
|
|
|
s_grads = torch.autograd.grad(grads, net.parameters())
|
|
|
|
second_order_grads.append( s_grads )
|
|
|
|
|
2020-01-09 12:26:23 +01:00
|
|
|
|
|
|
|
def test_one_shot_model(ckpath, use_train):
|
|
|
|
from models import get_cell_based_tiny_net, get_search_spaces
|
|
|
|
from datasets import get_datasets, SearchDataset
|
|
|
|
from config_utils import load_config, dict2config
|
|
|
|
from utils.nas_utils import evaluate_one_shot
|
|
|
|
use_train = int(use_train) > 0
|
|
|
|
#ckpath = 'output/search-cell-nas-bench-102/DARTS-V1-cifar10/checkpoint/seed-11416-basic.pth'
|
|
|
|
#ckpath = 'output/search-cell-nas-bench-102/DARTS-V1-cifar10/checkpoint/seed-28640-basic.pth'
|
|
|
|
print ('ckpath : {:}'.format(ckpath))
|
|
|
|
ckp = torch.load(ckpath)
|
|
|
|
xargs = ckp['args']
|
|
|
|
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
|
|
|
|
config = load_config(xargs.config_path, {'class_num': class_num, 'xshape': xshape}, None)
|
|
|
|
if xargs.dataset == 'cifar10':
|
|
|
|
cifar_split = load_config('configs/nas-benchmark/cifar-split.txt', None, None)
|
|
|
|
xvalid_data = deepcopy(train_data)
|
|
|
|
xvalid_data.transform = valid_data.transform
|
|
|
|
valid_loader= torch.utils.data.DataLoader(xvalid_data, batch_size=2048, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar_split.valid), num_workers=12, pin_memory=True)
|
|
|
|
else: raise ValueError('invalid dataset : {:}'.format(xargs.dataseet))
|
|
|
|
search_space = get_search_spaces('cell', xargs.search_space_name)
|
|
|
|
model_config = dict2config({'name': 'SETN', 'C': xargs.channel, 'N': xargs.num_cells,
|
|
|
|
'max_nodes': xargs.max_nodes, 'num_classes': class_num,
|
|
|
|
'space' : search_space,
|
|
|
|
'affine' : False, 'track_running_stats': True}, None)
|
|
|
|
search_model = get_cell_based_tiny_net(model_config)
|
|
|
|
search_model.load_state_dict( ckp['search_model'] )
|
|
|
|
search_model = search_model.cuda()
|
|
|
|
api = API('/home/dxy/.torch/NAS-Bench-102-v1_0-e61699.pth')
|
|
|
|
archs, probs, accuracies = evaluate_one_shot(search_model, valid_loader, api, use_train)
|
|
|
|
|
|
|
|
|
2019-12-20 10:41:49 +01:00
|
|
|
if __name__ == '__main__':
|
2020-01-05 12:19:38 +01:00
|
|
|
#test_nas_api()
|
|
|
|
#for i in range(200): plot('{:04d}'.format(i))
|
2020-01-09 12:26:23 +01:00
|
|
|
#test_auto_grad()
|
|
|
|
test_one_shot_model(sys.argv[1], sys.argv[2])
|