2019-11-14 03:55:42 +01:00
|
|
|
##################################################
|
2019-11-15 07:26:32 +01:00
|
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
|
|
##################################################
|
2019-11-14 03:55:42 +01:00
|
|
|
# required to install hpbandster #################
|
|
|
|
##################################################
|
|
|
|
import os, sys, time, glob, random, argparse
|
|
|
|
import numpy as np, collections
|
|
|
|
from copy import deepcopy
|
|
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
from torch.distributions import Categorical
|
|
|
|
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
|
|
|
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
|
|
|
from config_utils import load_config, dict2config, configure2str
|
|
|
|
from datasets import get_datasets, SearchDataset
|
|
|
|
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
|
|
|
|
from utils import get_model_infos, obtain_accuracy
|
|
|
|
from log_utils import AverageMeter, time_string, convert_secs2time
|
2019-12-20 10:41:49 +01:00
|
|
|
from nas_102_api import NASBench102API as API
|
2019-11-14 03:55:42 +01:00
|
|
|
from models import CellStructure, get_search_spaces
|
|
|
|
from R_EA import train_and_eval
|
|
|
|
# BOHB: Robust and Efficient Hyperparameter Optimization at Scale, ICML 2018
|
|
|
|
import ConfigSpace
|
|
|
|
from hpbandster.optimizers.bohb import BOHB
|
|
|
|
import hpbandster.core.nameserver as hpns
|
|
|
|
from hpbandster.core.worker import Worker
|
|
|
|
|
|
|
|
|
|
|
|
def get_configuration_space(max_nodes, search_space):
|
|
|
|
cs = ConfigSpace.ConfigurationSpace()
|
|
|
|
#edge2index = {}
|
|
|
|
for i in range(1, max_nodes):
|
|
|
|
for j in range(i):
|
|
|
|
node_str = '{:}<-{:}'.format(i, j)
|
|
|
|
cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter(node_str, search_space))
|
|
|
|
return cs
|
|
|
|
|
|
|
|
|
|
|
|
def config2structure_func(max_nodes):
|
|
|
|
def config2structure(config):
|
|
|
|
genotypes = []
|
|
|
|
for i in range(1, max_nodes):
|
|
|
|
xlist = []
|
|
|
|
for j in range(i):
|
|
|
|
node_str = '{:}<-{:}'.format(i, j)
|
|
|
|
op_name = config[node_str]
|
|
|
|
xlist.append((op_name, j))
|
|
|
|
genotypes.append( tuple(xlist) )
|
|
|
|
return CellStructure( genotypes )
|
|
|
|
return config2structure
|
|
|
|
|
|
|
|
|
|
|
|
class MyWorker(Worker):
|
|
|
|
|
|
|
|
def __init__(self, *args, sleep_interval=0, convert_func=None, nas_bench=None, **kwargs):
|
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
self.sleep_interval = sleep_interval
|
|
|
|
self.convert_func = convert_func
|
|
|
|
self.nas_bench = nas_bench
|
|
|
|
self.test_time = 0
|
|
|
|
|
|
|
|
def compute(self, config, budget, **kwargs):
|
|
|
|
structure = self.convert_func( config )
|
2019-12-25 00:30:50 +01:00
|
|
|
reward, time_cost = train_and_eval(structure, self.nas_bench, None)
|
|
|
|
import pdb; pdb.set_trace()
|
2019-11-14 03:55:42 +01:00
|
|
|
self.test_time += 1
|
|
|
|
return ({
|
|
|
|
'loss': float(100-reward),
|
2019-12-25 00:30:50 +01:00
|
|
|
'info': time_cost})
|
2019-11-14 03:55:42 +01:00
|
|
|
|
|
|
|
|
2019-11-19 01:58:04 +01:00
|
|
|
def main(xargs, nas_bench):
|
2019-11-14 03:55:42 +01:00
|
|
|
assert torch.cuda.is_available(), 'CUDA is not available.'
|
|
|
|
torch.backends.cudnn.enabled = True
|
|
|
|
torch.backends.cudnn.benchmark = False
|
|
|
|
torch.backends.cudnn.deterministic = True
|
|
|
|
torch.set_num_threads( xargs.workers )
|
|
|
|
prepare_seed(xargs.rand_seed)
|
|
|
|
logger = prepare_logger(args)
|
|
|
|
|
|
|
|
assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10'
|
|
|
|
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
|
|
|
|
split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
|
|
|
|
cifar_split = load_config(split_Fpath, None, None)
|
|
|
|
train_split, valid_split = cifar_split.train, cifar_split.valid
|
|
|
|
logger.log('Load split file from {:}'.format(split_Fpath))
|
|
|
|
config_path = 'configs/nas-benchmark/algos/R-EA.config'
|
|
|
|
config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
|
|
|
|
# To split data
|
|
|
|
train_data_v2 = deepcopy(train_data)
|
|
|
|
train_data_v2.transform = valid_data.transform
|
|
|
|
valid_data = train_data_v2
|
|
|
|
search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
|
|
|
|
# data loader
|
|
|
|
train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True)
|
|
|
|
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
|
|
|
|
logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size))
|
|
|
|
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
|
|
|
|
extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader}
|
|
|
|
|
|
|
|
|
|
|
|
# nas dataset load
|
|
|
|
assert xargs.arch_nas_dataset is not None and os.path.isfile(xargs.arch_nas_dataset)
|
|
|
|
search_space = get_search_spaces('cell', xargs.search_space_name)
|
|
|
|
cs = get_configuration_space(xargs.max_nodes, search_space)
|
|
|
|
|
|
|
|
config2structure = config2structure_func(xargs.max_nodes)
|
|
|
|
hb_run_id = '0'
|
|
|
|
|
|
|
|
NS = hpns.NameServer(run_id=hb_run_id, host='localhost', port=0)
|
|
|
|
ns_host, ns_port = NS.start()
|
|
|
|
num_workers = 1
|
|
|
|
|
2019-11-19 01:58:04 +01:00
|
|
|
#nas_bench = AANASBenchAPI(xargs.arch_nas_dataset)
|
2019-12-20 10:41:49 +01:00
|
|
|
#logger.log('{:} Create NAS-BENCH-API DONE'.format(time_string()))
|
2019-11-14 03:55:42 +01:00
|
|
|
workers = []
|
|
|
|
for i in range(num_workers):
|
|
|
|
w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, nas_bench=nas_bench, run_id=hb_run_id, id=i)
|
|
|
|
w.run(background=True)
|
|
|
|
workers.append(w)
|
|
|
|
|
|
|
|
bohb = BOHB(configspace=cs,
|
|
|
|
run_id=hb_run_id,
|
2019-12-25 00:30:50 +01:00
|
|
|
eta=3, min_budget=3, max_budget=xargs.time_budget,
|
2019-11-14 03:55:42 +01:00
|
|
|
nameserver=ns_host,
|
|
|
|
nameserver_port=ns_port,
|
|
|
|
num_samples=xargs.num_samples,
|
|
|
|
random_fraction=xargs.random_fraction, bandwidth_factor=xargs.bandwidth_factor,
|
|
|
|
ping_interval=10, min_bandwidth=xargs.min_bandwidth)
|
|
|
|
# optimization_strategy=xargs.strategy, num_samples=xargs.num_samples,
|
|
|
|
|
|
|
|
results = bohb.run(xargs.n_iters, min_n_workers=num_workers)
|
2019-12-25 00:30:50 +01:00
|
|
|
import pdb; pdb.set_trace()
|
2019-11-14 03:55:42 +01:00
|
|
|
|
|
|
|
bohb.shutdown(shutdown_workers=True)
|
|
|
|
NS.shutdown()
|
|
|
|
|
|
|
|
id2config = results.get_id2config_mapping()
|
|
|
|
incumbent = results.get_incumbent_id()
|
|
|
|
|
|
|
|
logger.log('Best found configuration: {:}'.format(id2config[incumbent]['config']))
|
|
|
|
best_arch = config2structure( id2config[incumbent]['config'] )
|
|
|
|
|
2019-11-19 01:58:04 +01:00
|
|
|
info = nas_bench.query_by_arch( best_arch )
|
|
|
|
if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch))
|
|
|
|
else : logger.log('{:}'.format(info))
|
2019-11-14 03:55:42 +01:00
|
|
|
logger.log('-'*100)
|
|
|
|
|
|
|
|
logger.log('workers : {:}'.format(workers[0].test_time))
|
|
|
|
logger.close()
|
2019-11-19 01:58:04 +01:00
|
|
|
return logger.log_dir, nas_bench.query_index_by_arch( best_arch )
|
2019-11-14 03:55:42 +01:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = argparse.ArgumentParser("Regularized Evolution Algorithm")
|
|
|
|
parser.add_argument('--data_path', type=str, help='Path to dataset')
|
|
|
|
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
|
|
|
# channels and number-of-cells
|
|
|
|
parser.add_argument('--search_space_name', type=str, help='The search space name.')
|
|
|
|
parser.add_argument('--max_nodes', type=int, help='The maximum number of nodes.')
|
|
|
|
parser.add_argument('--channel', type=int, help='The number of channels.')
|
|
|
|
parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.')
|
2019-12-25 00:30:50 +01:00
|
|
|
parser.add_argument('--time_budget', type=int, help='The total time cost budge for searching (in seconds).')
|
2019-11-14 03:55:42 +01:00
|
|
|
# BOHB
|
|
|
|
parser.add_argument('--strategy', default="sampling", type=str, nargs='?', help='optimization strategy for the acquisition function')
|
2019-12-25 00:30:50 +01:00
|
|
|
parser.add_argument('--min_bandwidth', default=.3, type=float, nargs='?', help='minimum bandwidth for KDE')
|
2019-11-14 03:55:42 +01:00
|
|
|
parser.add_argument('--num_samples', default=64, type=int, nargs='?', help='number of samples for the acquisition function')
|
|
|
|
parser.add_argument('--random_fraction', default=.33, type=float, nargs='?', help='fraction of random configurations')
|
|
|
|
parser.add_argument('--bandwidth_factor', default=3, type=int, nargs='?', help='factor multiplied to the bandwidth')
|
|
|
|
parser.add_argument('--n_iters', default=100, type=int, nargs='?', help='number of iterations for optimization method')
|
|
|
|
# log
|
|
|
|
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
|
|
|
|
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
|
|
|
|
parser.add_argument('--arch_nas_dataset', type=str, help='The path to load the architecture dataset (tiny-nas-benchmark).')
|
|
|
|
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
|
|
|
|
parser.add_argument('--rand_seed', type=int, help='manual seed')
|
|
|
|
args = parser.parse_args()
|
2019-11-19 01:58:04 +01:00
|
|
|
#if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
|
|
|
|
if args.arch_nas_dataset is None or not os.path.isfile(args.arch_nas_dataset):
|
|
|
|
nas_bench = None
|
|
|
|
else:
|
|
|
|
print ('{:} build NAS-Benchmark-API from {:}'.format(time_string(), args.arch_nas_dataset))
|
2019-12-20 10:41:49 +01:00
|
|
|
nas_bench = API(args.arch_nas_dataset)
|
2019-11-19 01:58:04 +01:00
|
|
|
if args.rand_seed < 0:
|
|
|
|
save_dir, all_indexes, num = None, [], 500
|
|
|
|
for i in range(num):
|
|
|
|
print ('{:} : {:03d}/{:03d}'.format(time_string(), i, num))
|
|
|
|
args.rand_seed = random.randint(1, 100000)
|
|
|
|
save_dir, index = main(args, nas_bench)
|
|
|
|
all_indexes.append( index )
|
|
|
|
torch.save(all_indexes, save_dir / 'results.pth')
|
|
|
|
else:
|
|
|
|
main(args, nas_bench)
|