Update DEBUG INFO
This commit is contained in:
parent
147da98f94
commit
0dbbc286c9
256
exps/LFNA/lfna-debug.py
Normal file
256
exps/LFNA/lfna-debug.py
Normal file
@ -0,0 +1,256 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/LFNA/lfna-debug.py --env_version v1 --hidden_dim 16
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
|
||||
from log_utils import time_string
|
||||
from log_utils import AverageMeter, convert_secs2time
|
||||
|
||||
from utils import split_str2indexes
|
||||
|
||||
from procedures.advanced_main import basic_train_fn, basic_eval_fn
|
||||
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
||||
from datasets.synthetic_core import get_synthetic_env
|
||||
from models.xcore import get_model
|
||||
from xlayers import super_core
|
||||
|
||||
|
||||
from lfna_utils import lfna_setup, train_model, TimeData
|
||||
|
||||
|
||||
class LFNAmlp:
|
||||
"""A LFNA meta-model that uses the MLP as delta-net."""
|
||||
|
||||
def __init__(self, obs_dim, hidden_sizes, act_name, criterion):
|
||||
self.delta_net = super_core.SuperSequential(
|
||||
super_core.SuperLinear(obs_dim, hidden_sizes[0]),
|
||||
super_core.super_name2activation[act_name](),
|
||||
super_core.SuperLinear(hidden_sizes[0], hidden_sizes[1]),
|
||||
super_core.super_name2activation[act_name](),
|
||||
super_core.SuperLinear(hidden_sizes[1], 1),
|
||||
)
|
||||
self.meta_optimizer = torch.optim.Adam(
|
||||
self.delta_net.parameters(), lr=0.01, amsgrad=True
|
||||
)
|
||||
self.criterion = criterion
|
||||
|
||||
def adapt(self, model, seq_flatten_w):
|
||||
delta_inputs = torch.stack(seq_flatten_w, dim=-1)
|
||||
delta = self.delta_net(delta_inputs)
|
||||
container = model.get_w_container()
|
||||
unflatten_delta = container.unflatten(delta)
|
||||
future_container = container.create_container(unflatten_delta)
|
||||
return future_container
|
||||
|
||||
def step(self):
|
||||
torch.nn.utils.clip_grad_norm_(self.delta_net.parameters(), 1.0)
|
||||
self.meta_optimizer.step()
|
||||
|
||||
def zero_grad(self):
|
||||
self.meta_optimizer.zero_grad()
|
||||
self.delta_net.zero_grad()
|
||||
|
||||
def state_dict(self):
|
||||
return dict(
|
||||
delta_net=self.delta_net.state_dict(),
|
||||
meta_optimizer=self.meta_optimizer.state_dict(),
|
||||
)
|
||||
|
||||
|
||||
def main(args):
|
||||
logger, env_info, model_kwargs = lfna_setup(args)
|
||||
dynamic_env = env_info["dynamic_env"]
|
||||
model = get_model(dict(model_type="simple_mlp"), **model_kwargs)
|
||||
|
||||
total_time = env_info["total"]
|
||||
for i in range(total_time):
|
||||
for xkey in ("timestamp", "x", "y"):
|
||||
nkey = "{:}-{:}".format(i, xkey)
|
||||
assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys()))
|
||||
train_time_bar = total_time // 2
|
||||
network = get_model(dict(model_type="simple_mlp"), **model_kwargs)
|
||||
|
||||
criterion = torch.nn.MSELoss()
|
||||
logger.log("There are {:} weights.".format(network.get_w_container().numel()))
|
||||
|
||||
adaptor = LFNAmlp(args.meta_seq, (200, 200), "leaky_relu", criterion)
|
||||
|
||||
# pre-train the model
|
||||
init_dataset = TimeData(0, env_info["0-x"], env_info["0-y"])
|
||||
init_loss = train_model(network, init_dataset, args.init_lr, args.epochs)
|
||||
logger.log("The pre-training loss is {:.4f}".format(init_loss))
|
||||
|
||||
all_past_containers = []
|
||||
ground_truth_path = (
|
||||
logger.path(None) / ".." / "use-same-timestamp-v1-d16" / "final-ckp.pth"
|
||||
)
|
||||
ground_truth_data = torch.load(ground_truth_path)
|
||||
all_gt_containers = ground_truth_data["w_container_per_epoch"]
|
||||
all_gt_flattens = dict()
|
||||
for idx, container in all_gt_containers.items():
|
||||
all_gt_flattens[idx] = container.no_grad_clone().flatten()
|
||||
|
||||
# LFNA meta-training
|
||||
meta_loss_meter = AverageMeter()
|
||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
||||
for iepoch in range(args.epochs):
|
||||
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
||||
)
|
||||
logger.log(
|
||||
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
|
||||
+ need_time
|
||||
)
|
||||
|
||||
adaptor.zero_grad()
|
||||
|
||||
meta_losses = []
|
||||
for ibatch in range(args.meta_batch):
|
||||
future_timestamp = random.randint(args.meta_seq, train_time_bar)
|
||||
future_dataset = TimeData(
|
||||
future_timestamp,
|
||||
env_info["{:}-x".format(future_timestamp)],
|
||||
env_info["{:}-y".format(future_timestamp)],
|
||||
)
|
||||
seq_datasets = []
|
||||
for iseq in range(args.meta_seq):
|
||||
cur_time = future_timestamp - iseq - 1
|
||||
cur_x = env_info["{:}-x".format(cur_time)]
|
||||
cur_y = env_info["{:}-y".format(cur_time)]
|
||||
seq_datasets.append(TimeData(cur_time, cur_x, cur_y))
|
||||
seq_datasets.reverse()
|
||||
seq_flatten_w = [
|
||||
all_gt_flattens[dataset.timestamp] for dataset in seq_datasets
|
||||
]
|
||||
future_container = adaptor.adapt(network, seq_flatten_w)
|
||||
"""
|
||||
future_y_hat = network.forward_with_container(
|
||||
future_dataset.x, future_container
|
||||
)
|
||||
future_loss = adaptor.criterion(future_y_hat, future_dataset.y)
|
||||
"""
|
||||
future_loss = adaptor.criterion(
|
||||
future_container.flatten(), all_gt_flattens[future_timestamp]
|
||||
)
|
||||
# import pdb; pdb.set_trace()
|
||||
meta_losses.append(future_loss)
|
||||
meta_loss = torch.stack(meta_losses).mean()
|
||||
meta_loss.backward()
|
||||
adaptor.step()
|
||||
|
||||
meta_loss_meter.update(meta_loss.item())
|
||||
|
||||
logger.log(
|
||||
"meta-loss: {:.4f} ({:.4f}) ".format(
|
||||
meta_loss_meter.avg, meta_loss_meter.val
|
||||
)
|
||||
)
|
||||
if iepoch % 200 == 0:
|
||||
save_checkpoint(
|
||||
{"adaptor": adaptor.state_dict(), "iepoch": iepoch},
|
||||
logger.path("model"),
|
||||
logger,
|
||||
)
|
||||
per_epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
w_container_per_epoch = dict()
|
||||
# import pdb; pdb.set_trace()
|
||||
for idx in range(1, env_info["total"]):
|
||||
future_time = env_info["{:}-timestamp".format(idx)]
|
||||
future_x = env_info["{:}-x".format(idx)]
|
||||
future_y = env_info["{:}-y".format(idx)]
|
||||
seq_datasets = []
|
||||
for iseq in range(1, args.meta_seq + 1):
|
||||
cur_time = future_timestamp - iseq - 1
|
||||
if cur_time < 0:
|
||||
cur_time = 0
|
||||
cur_x = env_info["{:}-x".format(cur_time)]
|
||||
cur_y = env_info["{:}-y".format(cur_time)]
|
||||
seq_datasets.append(TimeData(cur_time, cur_x, cur_y))
|
||||
seq_datasets.reverse()
|
||||
seq_flatten_w = [all_gt_flattens[dataset.timestamp] for dataset in seq_datasets]
|
||||
future_container = adaptor.adapt(network, seq_flatten_w)
|
||||
w_container_per_epoch[idx] = future_container.no_grad_clone()
|
||||
with torch.no_grad():
|
||||
future_y_hat = network.forward_with_container(
|
||||
future_x, w_container_per_epoch[idx]
|
||||
)
|
||||
future_loss = adaptor.criterion(future_y_hat, future_y)
|
||||
logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()))
|
||||
|
||||
save_checkpoint(
|
||||
{"w_container_per_epoch": w_container_per_epoch},
|
||||
logger.path(None) / "final-ckp.pth",
|
||||
logger,
|
||||
)
|
||||
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Use the data in the past.")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/lfna-synthetic/lfna-debug",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env_version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
#####
|
||||
parser.add_argument(
|
||||
"--init_lr",
|
||||
type=float,
|
||||
default=0.1,
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_batch",
|
||||
type=int,
|
||||
default=32,
|
||||
help="The batch size for the meta-model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_seq",
|
||||
type=int,
|
||||
default=10,
|
||||
help="The length of the sequence for meta-model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=2000,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
args = parser.parse_args()
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.save_dir = "{:}-{:}-d{:}".format(
|
||||
args.save_dir, args.env_version, args.hidden_dim
|
||||
)
|
||||
main(args)
|
239
exps/LFNA/lfna-fix-init.py
Normal file
239
exps/LFNA/lfna-fix-init.py
Normal file
@ -0,0 +1,239 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/LFNA/lfna-fix-init.py --env_version v1 --hidden_dim 16
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
|
||||
from log_utils import time_string
|
||||
from log_utils import AverageMeter, convert_secs2time
|
||||
|
||||
from utils import split_str2indexes
|
||||
|
||||
from procedures.advanced_main import basic_train_fn, basic_eval_fn
|
||||
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
||||
from datasets.synthetic_core import get_synthetic_env
|
||||
from models.xcore import get_model
|
||||
from xlayers import super_core
|
||||
|
||||
|
||||
from lfna_utils import lfna_setup, train_model, TimeData
|
||||
|
||||
|
||||
class LFNAmlp:
|
||||
"""A LFNA meta-model that uses the MLP as delta-net."""
|
||||
|
||||
def __init__(self, obs_dim, hidden_sizes, act_name, criterion):
|
||||
self.delta_net = super_core.SuperSequential(
|
||||
super_core.SuperLinear(obs_dim, hidden_sizes[0]),
|
||||
super_core.super_name2activation[act_name](),
|
||||
super_core.SuperLinear(hidden_sizes[0], hidden_sizes[1]),
|
||||
super_core.super_name2activation[act_name](),
|
||||
super_core.SuperLinear(hidden_sizes[1], 1),
|
||||
)
|
||||
self.meta_optimizer = torch.optim.Adam(
|
||||
self.delta_net.parameters(), lr=0.001, amsgrad=True
|
||||
)
|
||||
self.criterion = criterion
|
||||
|
||||
def adapt(self, model, seq_datasets):
|
||||
delta_inputs = []
|
||||
container = model.get_w_container()
|
||||
for iseq, dataset in enumerate(seq_datasets):
|
||||
y_hat = model.forward_with_container(dataset.x, container)
|
||||
loss = self.criterion(y_hat, dataset.y)
|
||||
gradients = torch.autograd.grad(loss, container.parameters())
|
||||
with torch.no_grad():
|
||||
flatten_g = container.flatten(gradients)
|
||||
delta_inputs.append(flatten_g)
|
||||
flatten_w = container.no_grad_clone().flatten()
|
||||
delta_inputs.append(flatten_w)
|
||||
delta_inputs = torch.stack(delta_inputs, dim=-1)
|
||||
delta = self.delta_net(delta_inputs)
|
||||
|
||||
delta = torch.clamp(delta, -0.8, 0.8)
|
||||
unflatten_delta = container.unflatten(delta)
|
||||
future_container = container.no_grad_clone().additive(unflatten_delta)
|
||||
return future_container
|
||||
|
||||
def step(self):
|
||||
torch.nn.utils.clip_grad_norm_(self.delta_net.parameters(), 1.0)
|
||||
self.meta_optimizer.step()
|
||||
|
||||
def zero_grad(self):
|
||||
self.meta_optimizer.zero_grad()
|
||||
self.delta_net.zero_grad()
|
||||
|
||||
def state_dict(self):
|
||||
return dict(
|
||||
delta_net=self.delta_net.state_dict(),
|
||||
meta_optimizer=self.meta_optimizer.state_dict(),
|
||||
)
|
||||
|
||||
|
||||
def main(args):
|
||||
logger, env_info, model_kwargs = lfna_setup(args)
|
||||
dynamic_env = env_info["dynamic_env"]
|
||||
model = get_model(dict(model_type="simple_mlp"), **model_kwargs)
|
||||
|
||||
total_time = env_info["total"]
|
||||
for i in range(total_time):
|
||||
for xkey in ("timestamp", "x", "y"):
|
||||
nkey = "{:}-{:}".format(i, xkey)
|
||||
assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys()))
|
||||
train_time_bar = total_time // 2
|
||||
network = get_model(dict(model_type="simple_mlp"), **model_kwargs)
|
||||
|
||||
criterion = torch.nn.MSELoss()
|
||||
logger.log("There are {:} weights.".format(network.get_w_container().numel()))
|
||||
|
||||
adaptor = LFNAmlp(1 + args.meta_seq, (20, 20), "leaky_relu", criterion)
|
||||
|
||||
# pre-train the model
|
||||
init_dataset = TimeData(0, env_info["0-x"], env_info["0-y"])
|
||||
init_loss = train_model(network, init_dataset, args.init_lr, args.epochs)
|
||||
logger.log("The pre-training loss is {:.4f}".format(init_loss))
|
||||
|
||||
# LFNA meta-training
|
||||
meta_loss_meter = AverageMeter()
|
||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
||||
for iepoch in range(args.epochs):
|
||||
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
||||
)
|
||||
logger.log(
|
||||
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
|
||||
+ need_time
|
||||
)
|
||||
|
||||
adaptor.zero_grad()
|
||||
|
||||
batch_indexes, meta_losses = [], []
|
||||
for ibatch in range(args.meta_batch):
|
||||
sampled_timestamp = random.random() * train_time_bar
|
||||
batch_indexes.append("{:.3f}".format(sampled_timestamp))
|
||||
seq_datasets = []
|
||||
for iseq in range(args.meta_seq + 1):
|
||||
cur_time = sampled_timestamp + iseq * dynamic_env.timestamp_interval
|
||||
cur_time, (x, y) = dynamic_env(cur_time)
|
||||
seq_datasets.append(TimeData(cur_time, x, y))
|
||||
history_datasets, future_dataset = seq_datasets[:-1], seq_datasets[-1]
|
||||
future_container = adaptor.adapt(network, history_datasets)
|
||||
future_y_hat = network.forward_with_container(
|
||||
future_dataset.x, future_container
|
||||
)
|
||||
future_loss = adaptor.criterion(future_y_hat, future_dataset.y)
|
||||
meta_losses.append(future_loss)
|
||||
meta_loss = torch.stack(meta_losses).mean()
|
||||
meta_loss.backward()
|
||||
adaptor.step()
|
||||
|
||||
meta_loss_meter.update(meta_loss.item())
|
||||
|
||||
logger.log(
|
||||
"meta-loss: {:.4f} ({:.4f}) batch: {:}".format(
|
||||
meta_loss_meter.avg, meta_loss_meter.val, ",".join(batch_indexes[:5])
|
||||
)
|
||||
)
|
||||
if iepoch % 200 == 0:
|
||||
save_checkpoint(
|
||||
{"adaptor": adaptor.state_dict(), "iepoch": iepoch},
|
||||
logger.path("model"),
|
||||
logger,
|
||||
)
|
||||
per_epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
w_container_per_epoch = dict()
|
||||
for idx in range(1, env_info["total"]):
|
||||
future_time = env_info["{:}-timestamp".format(idx)]
|
||||
future_x = env_info["{:}-x".format(idx)]
|
||||
future_y = env_info["{:}-y".format(idx)]
|
||||
seq_datasets = []
|
||||
for iseq in range(1, args.meta_seq + 1):
|
||||
cur_time = future_time - iseq * dynamic_env.timestamp_interval
|
||||
cur_time, (x, y) = dynamic_env(cur_time)
|
||||
seq_datasets.append(TimeData(cur_time, x, y))
|
||||
seq_datasets.reverse()
|
||||
future_container = adaptor.adapt(network, seq_datasets)
|
||||
w_container_per_epoch[idx] = future_container.no_grad_clone()
|
||||
with torch.no_grad():
|
||||
future_y_hat = network.forward_with_container(
|
||||
future_x, w_container_per_epoch[idx]
|
||||
)
|
||||
future_loss = adaptor.criterion(future_y_hat, future_y)
|
||||
logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()))
|
||||
|
||||
save_checkpoint(
|
||||
{"w_container_per_epoch": w_container_per_epoch},
|
||||
logger.path(None) / "final-ckp.pth",
|
||||
logger,
|
||||
)
|
||||
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Use the data in the past.")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/lfna-synthetic/lfna-fix-init",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env_version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
#####
|
||||
parser.add_argument(
|
||||
"--init_lr",
|
||||
type=float,
|
||||
default=0.1,
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_batch",
|
||||
type=int,
|
||||
default=32,
|
||||
help="The batch size for the meta-model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_seq",
|
||||
type=int,
|
||||
default=10,
|
||||
help="The length of the sequence for meta-model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=1000,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
args = parser.parse_args()
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.save_dir = "{:}-{:}-d{:}".format(
|
||||
args.save_dir, args.env_version, args.hidden_dim
|
||||
)
|
||||
main(args)
|
@ -1,272 +0,0 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/LFNA/lfna-v0.py
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
|
||||
from log_utils import time_string
|
||||
from log_utils import AverageMeter, convert_secs2time
|
||||
|
||||
from utils import split_str2indexes
|
||||
|
||||
from procedures.advanced_main import basic_train_fn, basic_eval_fn
|
||||
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
||||
from datasets.synthetic_core import get_synthetic_env
|
||||
from models.xcore import get_model
|
||||
from xlayers import super_core
|
||||
|
||||
|
||||
class LFNAmlp:
|
||||
"""A LFNA meta-model that uses the MLP as delta-net."""
|
||||
|
||||
def __init__(self, obs_dim, hidden_sizes, act_name):
|
||||
self.delta_net = super_core.SuperSequential(
|
||||
super_core.SuperLinear(obs_dim, hidden_sizes[0]),
|
||||
super_core.super_name2activation[act_name](),
|
||||
super_core.SuperLinear(hidden_sizes[0], hidden_sizes[1]),
|
||||
super_core.super_name2activation[act_name](),
|
||||
super_core.SuperLinear(hidden_sizes[1], 1),
|
||||
)
|
||||
self.meta_optimizer = torch.optim.Adam(
|
||||
self.delta_net.parameters(), lr=0.01, amsgrad=True
|
||||
)
|
||||
|
||||
def adapt(self, model, criterion, w_container, seq_datasets):
|
||||
w_container.requires_grad_(True)
|
||||
containers = [w_container]
|
||||
for idx, dataset in enumerate(seq_datasets):
|
||||
x, y = dataset.x, dataset.y
|
||||
y_hat = model.forward_with_container(x, containers[-1])
|
||||
loss = criterion(y_hat, y)
|
||||
gradients = torch.autograd.grad(loss, containers[-1].tensors)
|
||||
with torch.no_grad():
|
||||
flatten_w = containers[-1].flatten().view(-1, 1)
|
||||
flatten_g = containers[-1].flatten(gradients).view(-1, 1)
|
||||
input_statistics = torch.tensor([x.mean(), x.std()]).view(1, 2)
|
||||
input_statistics = input_statistics.expand(flatten_w.numel(), -1)
|
||||
delta_inputs = torch.cat((flatten_w, flatten_g, input_statistics), dim=-1)
|
||||
delta = self.delta_net(delta_inputs).view(-1)
|
||||
delta = torch.clamp(delta, -0.5, 0.5)
|
||||
unflatten_delta = containers[-1].unflatten(delta)
|
||||
future_container = containers[-1].no_grad_clone().additive(unflatten_delta)
|
||||
# future_container = containers[-1].additive(unflatten_delta)
|
||||
containers.append(future_container)
|
||||
# containers = containers[1:]
|
||||
meta_loss = []
|
||||
temp_containers = []
|
||||
for idx, dataset in enumerate(seq_datasets):
|
||||
if idx == 0:
|
||||
continue
|
||||
current_container = containers[idx]
|
||||
y_hat = model.forward_with_container(dataset.x, current_container)
|
||||
loss = criterion(y_hat, dataset.y)
|
||||
meta_loss.append(loss)
|
||||
temp_containers.append((dataset.timestamp, current_container, -loss.item()))
|
||||
meta_loss = sum(meta_loss)
|
||||
w_container.requires_grad_(False)
|
||||
# meta_loss.backward()
|
||||
# self.meta_optimizer.step()
|
||||
return meta_loss, temp_containers
|
||||
|
||||
def step(self):
|
||||
torch.nn.utils.clip_grad_norm_(self.delta_net.parameters(), 1.0)
|
||||
self.meta_optimizer.step()
|
||||
|
||||
def zero_grad(self):
|
||||
self.meta_optimizer.zero_grad()
|
||||
self.delta_net.zero_grad()
|
||||
|
||||
|
||||
class TimeData:
|
||||
def __init__(self, timestamp, xs, ys):
|
||||
self._timestamp = timestamp
|
||||
self._xs = xs
|
||||
self._ys = ys
|
||||
|
||||
@property
|
||||
def x(self):
|
||||
return self._xs
|
||||
|
||||
@property
|
||||
def y(self):
|
||||
return self._ys
|
||||
|
||||
@property
|
||||
def timestamp(self):
|
||||
return self._timestamp
|
||||
|
||||
|
||||
class Population:
|
||||
"""A population used to maintain models at different timestamps."""
|
||||
|
||||
def __init__(self):
|
||||
self._time2model = dict()
|
||||
self._time2score = dict() # higher is better
|
||||
|
||||
def append(self, timestamp, model, score):
|
||||
if timestamp in self._time2model:
|
||||
if self._time2score[timestamp] > score:
|
||||
return
|
||||
self._time2model[timestamp] = model.no_grad_clone()
|
||||
self._time2score[timestamp] = score
|
||||
|
||||
def query(self, timestamp):
|
||||
closet_timestamp = None
|
||||
for xtime, model in self._time2model.items():
|
||||
if closet_timestamp is None or (
|
||||
xtime < timestamp and timestamp - closet_timestamp >= timestamp - xtime
|
||||
):
|
||||
closet_timestamp = xtime
|
||||
return self._time2model[closet_timestamp], closet_timestamp
|
||||
|
||||
def debug_info(self, timestamps):
|
||||
xstrs = []
|
||||
for timestamp in timestamps:
|
||||
if timestamp in self._time2score:
|
||||
xstrs.append(
|
||||
"{:04d}: {:.4f}".format(timestamp, self._time2score[timestamp])
|
||||
)
|
||||
return ", ".join(xstrs)
|
||||
|
||||
|
||||
def main(args):
|
||||
prepare_seed(args.rand_seed)
|
||||
logger = prepare_logger(args)
|
||||
|
||||
cache_path = (logger.path(None) / ".." / "env-info.pth").resolve()
|
||||
if cache_path.exists():
|
||||
env_info = torch.load(cache_path)
|
||||
else:
|
||||
env_info = dict()
|
||||
dynamic_env = get_synthetic_env()
|
||||
env_info["total"] = len(dynamic_env)
|
||||
for idx, (timestamp, (_allx, _ally)) in enumerate(tqdm(dynamic_env)):
|
||||
env_info["{:}-timestamp".format(idx)] = timestamp
|
||||
env_info["{:}-x".format(idx)] = _allx
|
||||
env_info["{:}-y".format(idx)] = _ally
|
||||
env_info["dynamic_env"] = dynamic_env
|
||||
torch.save(env_info, cache_path)
|
||||
|
||||
total_time = env_info["total"]
|
||||
for i in range(total_time):
|
||||
for xkey in ("timestamp", "x", "y"):
|
||||
nkey = "{:}-{:}".format(i, xkey)
|
||||
assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys()))
|
||||
train_time_bar = total_time // 2
|
||||
base_model = get_model(
|
||||
dict(model_type="simple_mlp"),
|
||||
act_cls="leaky_relu",
|
||||
norm_cls="identity",
|
||||
input_dim=1,
|
||||
output_dim=1,
|
||||
)
|
||||
|
||||
w_container = base_model.get_w_container()
|
||||
criterion = torch.nn.MSELoss()
|
||||
print("There are {:} weights.".format(w_container.numel()))
|
||||
|
||||
adaptor = LFNAmlp(4, (50, 20), "leaky_relu")
|
||||
|
||||
pool = Population()
|
||||
pool.append(0, w_container, -100)
|
||||
|
||||
# LFNA meta-training
|
||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
||||
for iepoch in range(args.epochs):
|
||||
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
||||
)
|
||||
logger.log(
|
||||
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
|
||||
+ need_time
|
||||
)
|
||||
|
||||
adaptor.zero_grad()
|
||||
|
||||
debug_timestamp = set()
|
||||
all_meta_losses = []
|
||||
for ibatch in range(args.meta_batch):
|
||||
sampled_timestamp = random.randint(0, train_time_bar)
|
||||
query_w_container, query_timestamp = pool.query(sampled_timestamp)
|
||||
# def adapt(self, model, w_container, xs, ys):
|
||||
seq_datasets = []
|
||||
# xs, ys = [], []
|
||||
for it in range(sampled_timestamp, sampled_timestamp + args.max_seq):
|
||||
xs = env_info["{:}-x".format(it)]
|
||||
ys = env_info["{:}-y".format(it)]
|
||||
seq_datasets.append(TimeData(it, xs, ys))
|
||||
temp_meta_loss, temp_containers = adaptor.adapt(
|
||||
base_model, criterion, query_w_container, seq_datasets
|
||||
)
|
||||
all_meta_losses.append(temp_meta_loss)
|
||||
for temp_time, temp_container, temp_score in temp_containers:
|
||||
pool.append(temp_time, temp_container, temp_score)
|
||||
debug_timestamp.add(temp_time)
|
||||
meta_loss = torch.stack(all_meta_losses).mean()
|
||||
meta_loss.backward()
|
||||
adaptor.step()
|
||||
|
||||
debug_str = pool.debug_info(debug_timestamp)
|
||||
logger.log("meta-loss: {:.4f}".format(meta_loss.item()))
|
||||
|
||||
per_epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Use the data in the past.")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/lfna-synthetic/lfna-v1",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--init_lr",
|
||||
type=float,
|
||||
default=0.1,
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_batch",
|
||||
type=int,
|
||||
default=5,
|
||||
help="The batch size for the meta-model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=1000,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max_seq",
|
||||
type=int,
|
||||
default=5,
|
||||
help="The maximum length of the sequence.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="The number of data loading workers (default: 4)",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
args = parser.parse_args()
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
main(args)
|
@ -1,6 +1,7 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
import copy
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
from procedures import prepare_seed, prepare_logger
|
||||
@ -37,6 +38,24 @@ def lfna_setup(args):
|
||||
return logger, env_info, model_kwargs
|
||||
|
||||
|
||||
def train_model(model, dataset, lr, epochs):
|
||||
criterion = torch.nn.MSELoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=lr, amsgrad=True)
|
||||
best_loss, best_param = None, None
|
||||
for _iepoch in range(epochs):
|
||||
preds = model(dataset.x)
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(preds, dataset.y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
# save best
|
||||
if best_loss is None or best_loss > loss.item():
|
||||
best_loss = loss.item()
|
||||
best_param = copy.deepcopy(model.state_dict())
|
||||
model.load_state_dict(best_param)
|
||||
return best_loss
|
||||
|
||||
|
||||
class TimeData:
|
||||
def __init__(self, timestamp, xs, ys):
|
||||
self._timestamp = timestamp
|
||||
@ -56,6 +75,6 @@ class TimeData:
|
||||
return self._timestamp
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}(timestamp={:}, with {num} samples)".format(
|
||||
return "{name}(timestamp={timestamp}, with {num} samples)".format(
|
||||
name=self.__class__.__name__, timestamp=self._timestamp, num=len(self._xs)
|
||||
)
|
||||
|
@ -237,6 +237,8 @@ def compare_algs(save_dir, version, alg_dir="./outputs/lfna-synthetic"):
|
||||
alg_name2dir["Optimal"] = "use-same-timestamp"
|
||||
alg_name2dir["Supervised Learning (History Data)"] = "use-all-past-data"
|
||||
alg_name2dir["MAML"] = "use-maml-s1"
|
||||
alg_name2dir["LFNA (fix init)"] = "lfna-fix-init"
|
||||
alg_name2dir["LFNA (debug)"] = "lfna-debug"
|
||||
alg_name2all_containers = OrderedDict()
|
||||
if version == "v1":
|
||||
poststr = "v1-d16"
|
||||
@ -256,7 +258,7 @@ def compare_algs(save_dir, version, alg_dir="./outputs/lfna-synthetic"):
|
||||
)
|
||||
|
||||
alg2xs, alg2ys = defaultdict(list), defaultdict(list)
|
||||
colors = ["r", "g", "b"]
|
||||
colors = ["r", "g", "b", "m", "y"]
|
||||
|
||||
dynamic_env = env_info["dynamic_env"]
|
||||
min_t, max_t = dynamic_env.min_timestamp, dynamic_env.max_timestamp
|
||||
|
@ -51,6 +51,10 @@ class SyntheticDEnv(data.Dataset):
|
||||
def max_timestamp(self):
|
||||
return self._timestamp_generator.max_timestamp
|
||||
|
||||
@property
|
||||
def timestamp_interval(self):
|
||||
return self._timestamp_generator.interval
|
||||
|
||||
def set_oracle_map(self, functor):
|
||||
self._oracle_map = functor
|
||||
|
||||
@ -67,6 +71,9 @@ class SyntheticDEnv(data.Dataset):
|
||||
def __getitem__(self, index):
|
||||
assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self))
|
||||
index, timestamp = self._timestamp_generator[index]
|
||||
return self.__call__(timestamp)
|
||||
|
||||
def __call__(self, timestamp):
|
||||
mean_list = [functor(timestamp) for functor in self._mean_functors]
|
||||
cov_matrix = [
|
||||
[abs(cov_gen(timestamp)) for cov_gen in cov_functor]
|
||||
|
@ -60,6 +60,10 @@ class TimeStamp(UnifiedSplit, data.Dataset):
|
||||
@property
|
||||
def max_timestamp(self):
|
||||
return self._max_timestamp
|
||||
|
||||
@property
|
||||
def interval(self):
|
||||
return self._interval
|
||||
|
||||
def __iter__(self):
|
||||
self._iter_num = 0
|
||||
|
@ -46,6 +46,13 @@ class TensorContainer:
|
||||
result.append(name, new_tensor, self._param_or_buffers[index])
|
||||
return result
|
||||
|
||||
def create_container(self, tensors):
|
||||
result = TensorContainer()
|
||||
for index, name in enumerate(self._names):
|
||||
new_tensor = tensors[index]
|
||||
result.append(name, new_tensor, self._param_or_buffers[index])
|
||||
return result
|
||||
|
||||
def no_grad_clone(self):
|
||||
result = TensorContainer()
|
||||
with torch.no_grad():
|
||||
|
Loading…
Reference in New Issue
Block a user