update README
This commit is contained in:
		| @@ -32,6 +32,7 @@ Evaluate a trained CNN model | ||||
| ``` | ||||
| CUDA_VISIBLE_DEVICES=0 python ./exps-cnn/evaluate.py --data_path  $TORCH_HOME/cifar.python --checkpoint ${checkpoint-path} | ||||
| CUDA_VISIBLE_DEVICES=0 python ./exps-cnn/evaluate.py --data_path  $TORCH_HOME/ILSVRC2012 --checkpoint ${checkpoint-path} | ||||
| CUDA_VISIBLE_DEVICES=0 python ./exps-cnn/evaluate.py --data_path  $TORCH_HOME/ILSVRC2012 --checkpoint GDAS-V1-C50-N14-ImageNet.pth | ||||
| ``` | ||||
|  | ||||
| Train the searched RNN | ||||
| @@ -48,10 +49,11 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts-rnn/train-WT2.sh GDAS | ||||
| Some training logs can be found in `./data/logs/`, and some pre-trained models can be found in [Google Driver](https://drive.google.com/open?id=1Ofhc49xC1PLIX4O708gJZ1ugzz4td_RJ). | ||||
|  | ||||
| ### Experimental Results | ||||
| <img src="data/imagenet-results.png" width="600"> | ||||
| <img src="data/imagenet-results.png" width="700"> | ||||
| Figure 2. Top-1 and top-5 errors on ImageNet. | ||||
|  | ||||
| ### Citation | ||||
| If you find that this project (GDAS) helps your research, please cite the paper: | ||||
| ``` | ||||
| @inproceedings{dong2019search, | ||||
|   title={Searching for A Robust Neural Architecture in Four GPU Hours}, | ||||
|   | ||||
		Reference in New Issue
	
	Block a user