Move to LFNA

This commit is contained in:
D-X-Y 2021-04-25 23:06:51 -07:00
parent 89a5faabc3
commit 1980779053
4 changed files with 47 additions and 47 deletions

View File

@ -1,7 +1,7 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
############################################################################
# CUDA_VISIBLE_DEVICES=0 python exps/synthetic/baseline.py #
# CUDA_VISIBLE_DEVICES=0 python exps/LFNA/vis-synthetic.py #
############################################################################
import os, sys, copy, random
import torch
@ -31,17 +31,19 @@ from datasets.synthetic_example import create_example_v1
from utils.temp_sync import optimize_fn, evaluate_fn
def draw_fig(save_dir, timestamp, scatter_list):
def draw_multi_fig(save_dir, timestamp, scatter_list, fig_title=None):
save_path = save_dir / "{:04d}".format(timestamp)
# print('Plot the figure at timestamp-{:} into {:}'.format(timestamp, save_path))
dpi, width, height = 40, 1500, 1500
dpi, width, height = 40, 2000, 1300
figsize = width / float(dpi), height / float(dpi)
LabelSize, LegendFontsize, font_gap = 80, 80, 5
fig = plt.figure(figsize=figsize)
if fig_title is not None:
fig.suptitle(fig_title, fontsize=LegendFontsize)
cur_ax = fig.add_subplot(1, 1, 1)
for scatter_dict in scatter_list:
for idx, scatter_dict in enumerate(scatter_list):
cur_ax = fig.add_subplot(len(scatter_list), 1, idx + 1)
cur_ax.scatter(
scatter_dict["xaxis"],
scatter_dict["yaxis"],
@ -50,15 +52,15 @@ def draw_fig(save_dir, timestamp, scatter_list):
alpha=scatter_dict["alpha"],
label=scatter_dict["label"],
)
cur_ax.set_xlabel("X", fontsize=LabelSize)
cur_ax.set_ylabel("f(X)", rotation=0, fontsize=LabelSize)
cur_ax.set_xlim(-6, 6)
cur_ax.set_ylim(-40, 40)
for tick in cur_ax.xaxis.get_major_ticks():
tick.label.set_fontsize(LabelSize - font_gap)
tick.label.set_rotation(10)
for tick in cur_ax.yaxis.get_major_ticks():
tick.label.set_fontsize(LabelSize - font_gap)
cur_ax.set_xlabel("X", fontsize=LabelSize)
cur_ax.set_ylabel("f(X)", rotation=0, fontsize=LabelSize)
cur_ax.set_xlim(scatter_dict["xlim"][0], scatter_dict["xlim"][1])
cur_ax.set_ylim(scatter_dict["ylim"][0], scatter_dict["ylim"][1])
for tick in cur_ax.xaxis.get_major_ticks():
tick.label.set_fontsize(LabelSize - font_gap)
tick.label.set_rotation(10)
for tick in cur_ax.yaxis.get_major_ticks():
tick.label.set_fontsize(LabelSize - font_gap)
plt.legend(loc=1, fontsize=LegendFontsize)
fig.savefig(str(save_path) + ".pdf", dpi=dpi, bbox_inches="tight", format="pdf")
@ -66,7 +68,7 @@ def draw_fig(save_dir, timestamp, scatter_list):
plt.close("all")
def main(save_dir):
def compare_cl(save_dir):
save_dir = Path(str(save_dir))
save_dir.mkdir(parents=True, exist_ok=True)
dynamic_env, function = create_example_v1(100, num_per_task=1000)
@ -74,6 +76,10 @@ def main(save_dir):
additional_xaxis = np.arange(-6, 6, 0.2)
models = dict()
cl_function = copy.deepcopy(function)
cl_function.set_timestamp(0)
cl_xaxis_all = None
for idx, (timestamp, dataset) in enumerate(tqdm(dynamic_env, ncols=50)):
xaxis_all = dataset[:, 0].numpy()
# xaxis_all = np.concatenate((additional_xaxis, xaxis_all))
@ -81,51 +87,46 @@ def main(save_dir):
function.set_timestamp(timestamp)
yaxis_all = function.noise_call(xaxis_all)
# split the dataset
indexes = list(range(xaxis_all.shape[0]))
random.shuffle(indexes)
train_indexes = indexes[: len(indexes) // 2]
valid_indexes = indexes[len(indexes) // 2 :]
train_xs, train_ys = xaxis_all[train_indexes], yaxis_all[train_indexes]
valid_xs, valid_ys = xaxis_all[valid_indexes], yaxis_all[valid_indexes]
# create CL data
if cl_xaxis_all is None:
cl_xaxis_all = xaxis_all
else:
cl_xaxis_all = np.concatenate((cl_xaxis_all, xaxis_all + timestamp * 0.2))
cl_yaxis_all = cl_function(cl_xaxis_all)
model, loss_fn, train_loss = optimize_fn(train_xs, train_ys)
# model, loss_fn, train_loss = optimize_fn(xaxis_all, yaxis_all)
pred_valid_ys, valid_loss = evaluate_fn(model, valid_xs, valid_ys, loss_fn)
print(
"[{:03d}] T-{:03d}, train-loss={:.5f}, valid-loss={:.5f}".format(
idx, timestamp, train_loss, valid_loss
)
)
# the first plot
scatter_list = []
scatter_list.append(
{
"xaxis": valid_xs,
"yaxis": valid_ys,
"xaxis": xaxis_all,
"yaxis": yaxis_all,
"color": "k",
"s": 10,
"alpha": 0.99,
"label": "Timestamp={:02d}".format(timestamp),
"xlim": (-6, 6),
"ylim": (-40, 40),
"label": "LFNA",
}
)
scatter_list.append(
{
"xaxis": valid_xs,
"yaxis": pred_valid_ys,
"xaxis": cl_xaxis_all,
"yaxis": cl_yaxis_all,
"color": "r",
"s": 10,
"alpha": 0.5,
"label": "MLP at now",
"xlim": (-6, 6 + timestamp * 0.2),
"ylim": (-200, 40),
"alpha": 0.99,
"label": "Continual Learning",
}
)
draw_fig(save_dir, timestamp, scatter_list)
draw_multi_fig(
save_dir, timestamp, scatter_list, "Timestamp={:03d}".format(timestamp)
)
print("Save all figures into {:}".format(save_dir))
save_dir = save_dir.resolve()
cmd = "ffmpeg -y -i {xdir}/%04d.png -pix_fmt yuv420p -vf fps=2 -vf scale=1000:1000 -vb 5000k {xdir}/vis.mp4".format(
cmd = "ffmpeg -y -i {xdir}/%04d.png -pix_fmt yuv420p -vf fps=2 -vf scale=1500:1000 -vb 5000k {xdir}/vis.mp4".format(
xdir=save_dir
)
os.system(cmd)
@ -133,7 +134,7 @@ def main(save_dir):
if __name__ == "__main__":
parser = argparse.ArgumentParser("Baseline")
parser = argparse.ArgumentParser("Visualize synthetic data.")
parser.add_argument(
"--save_dir",
type=str,
@ -142,4 +143,4 @@ if __name__ == "__main__":
)
args = parser.parse_args()
main(args.save_dir)
compare_cl(os.path.join(args.save_dir, "compare-cl"))

View File

@ -17,8 +17,7 @@ from .super_module import BoolSpaceType
class SuperReLU(SuperModule):
"""Applies a the rectified linear unit function element-wise."""
def __init__(
self, inplace=False) -> None:
def __init__(self, inplace=False) -> None:
super(SuperReLU, self).__init__()
self._inplace = inplace
@ -33,4 +32,4 @@ class SuperReLU(SuperModule):
return F.relu(input, inplace=self._inplace)
def extra_repr(self) -> str:
return 'inplace=True' if self._inplace else ''
return "inplace=True" if self._inplace else ""

View File

@ -18,4 +18,3 @@ from .super_activations import SuperReLU
from .super_trade_stem import SuperAlphaEBDv1
from .super_positional_embedding import SuperPositionalEncoder

View File

@ -79,6 +79,7 @@ def test_super_sequential_v1():
super_core.SuperSimpleNorm(1, 1),
torch.nn.ReLU(),
super_core.SuperLinear(10, 10),
super_core.SuperReLU()
)
inputs = torch.rand(10, 10)
print(model)