Move to LFNA
This commit is contained in:
		| @@ -1,7 +1,7 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 # | ||||
| ############################################################################ | ||||
| # CUDA_VISIBLE_DEVICES=0 python exps/synthetic/baseline.py                 # | ||||
| # CUDA_VISIBLE_DEVICES=0 python exps/LFNA/vis-synthetic.py                 # | ||||
| ############################################################################ | ||||
| import os, sys, copy, random | ||||
| import torch | ||||
| @@ -31,17 +31,19 @@ from datasets.synthetic_example import create_example_v1 | ||||
| from utils.temp_sync import optimize_fn, evaluate_fn | ||||
| 
 | ||||
| 
 | ||||
| def draw_fig(save_dir, timestamp, scatter_list): | ||||
| def draw_multi_fig(save_dir, timestamp, scatter_list, fig_title=None): | ||||
|     save_path = save_dir / "{:04d}".format(timestamp) | ||||
|     # print('Plot the figure at timestamp-{:} into {:}'.format(timestamp, save_path)) | ||||
|     dpi, width, height = 40, 1500, 1500 | ||||
|     dpi, width, height = 40, 2000, 1300 | ||||
|     figsize = width / float(dpi), height / float(dpi) | ||||
|     LabelSize, LegendFontsize, font_gap = 80, 80, 5 | ||||
| 
 | ||||
|     fig = plt.figure(figsize=figsize) | ||||
|     if fig_title is not None: | ||||
|         fig.suptitle(fig_title, fontsize=LegendFontsize) | ||||
| 
 | ||||
|     cur_ax = fig.add_subplot(1, 1, 1) | ||||
|     for scatter_dict in scatter_list: | ||||
|     for idx, scatter_dict in enumerate(scatter_list): | ||||
|         cur_ax = fig.add_subplot(len(scatter_list), 1, idx + 1) | ||||
|         cur_ax.scatter( | ||||
|             scatter_dict["xaxis"], | ||||
|             scatter_dict["yaxis"], | ||||
| @@ -50,15 +52,15 @@ def draw_fig(save_dir, timestamp, scatter_list): | ||||
|             alpha=scatter_dict["alpha"], | ||||
|             label=scatter_dict["label"], | ||||
|         ) | ||||
|     cur_ax.set_xlabel("X", fontsize=LabelSize) | ||||
|     cur_ax.set_ylabel("f(X)", rotation=0, fontsize=LabelSize) | ||||
|     cur_ax.set_xlim(-6, 6) | ||||
|     cur_ax.set_ylim(-40, 40) | ||||
|     for tick in cur_ax.xaxis.get_major_ticks(): | ||||
|         tick.label.set_fontsize(LabelSize - font_gap) | ||||
|         tick.label.set_rotation(10) | ||||
|     for tick in cur_ax.yaxis.get_major_ticks(): | ||||
|         tick.label.set_fontsize(LabelSize - font_gap) | ||||
|         cur_ax.set_xlabel("X", fontsize=LabelSize) | ||||
|         cur_ax.set_ylabel("f(X)", rotation=0, fontsize=LabelSize) | ||||
|         cur_ax.set_xlim(scatter_dict["xlim"][0], scatter_dict["xlim"][1]) | ||||
|         cur_ax.set_ylim(scatter_dict["ylim"][0], scatter_dict["ylim"][1]) | ||||
|         for tick in cur_ax.xaxis.get_major_ticks(): | ||||
|             tick.label.set_fontsize(LabelSize - font_gap) | ||||
|             tick.label.set_rotation(10) | ||||
|         for tick in cur_ax.yaxis.get_major_ticks(): | ||||
|             tick.label.set_fontsize(LabelSize - font_gap) | ||||
| 
 | ||||
|     plt.legend(loc=1, fontsize=LegendFontsize) | ||||
|     fig.savefig(str(save_path) + ".pdf", dpi=dpi, bbox_inches="tight", format="pdf") | ||||
| @@ -66,7 +68,7 @@ def draw_fig(save_dir, timestamp, scatter_list): | ||||
|     plt.close("all") | ||||
| 
 | ||||
| 
 | ||||
| def main(save_dir): | ||||
| def compare_cl(save_dir): | ||||
|     save_dir = Path(str(save_dir)) | ||||
|     save_dir.mkdir(parents=True, exist_ok=True) | ||||
|     dynamic_env, function = create_example_v1(100, num_per_task=1000) | ||||
| @@ -74,6 +76,10 @@ def main(save_dir): | ||||
|     additional_xaxis = np.arange(-6, 6, 0.2) | ||||
|     models = dict() | ||||
| 
 | ||||
|     cl_function = copy.deepcopy(function) | ||||
|     cl_function.set_timestamp(0) | ||||
|     cl_xaxis_all = None | ||||
| 
 | ||||
|     for idx, (timestamp, dataset) in enumerate(tqdm(dynamic_env, ncols=50)): | ||||
|         xaxis_all = dataset[:, 0].numpy() | ||||
|         # xaxis_all = np.concatenate((additional_xaxis, xaxis_all)) | ||||
| @@ -81,51 +87,46 @@ def main(save_dir): | ||||
|         function.set_timestamp(timestamp) | ||||
|         yaxis_all = function.noise_call(xaxis_all) | ||||
| 
 | ||||
|         # split the dataset | ||||
|         indexes = list(range(xaxis_all.shape[0])) | ||||
|         random.shuffle(indexes) | ||||
|         train_indexes = indexes[: len(indexes) // 2] | ||||
|         valid_indexes = indexes[len(indexes) // 2 :] | ||||
|         train_xs, train_ys = xaxis_all[train_indexes], yaxis_all[train_indexes] | ||||
|         valid_xs, valid_ys = xaxis_all[valid_indexes], yaxis_all[valid_indexes] | ||||
|         # create CL data | ||||
|         if cl_xaxis_all is None: | ||||
|             cl_xaxis_all = xaxis_all | ||||
|         else: | ||||
|             cl_xaxis_all = np.concatenate((cl_xaxis_all, xaxis_all + timestamp * 0.2)) | ||||
|         cl_yaxis_all = cl_function(cl_xaxis_all) | ||||
| 
 | ||||
|         model, loss_fn, train_loss = optimize_fn(train_xs, train_ys) | ||||
|         # model, loss_fn, train_loss = optimize_fn(xaxis_all, yaxis_all) | ||||
|         pred_valid_ys, valid_loss = evaluate_fn(model, valid_xs, valid_ys, loss_fn) | ||||
|         print( | ||||
|             "[{:03d}] T-{:03d}, train-loss={:.5f}, valid-loss={:.5f}".format( | ||||
|                 idx, timestamp, train_loss, valid_loss | ||||
|             ) | ||||
|         ) | ||||
| 
 | ||||
|         # the first plot | ||||
|         scatter_list = [] | ||||
|         scatter_list.append( | ||||
|             { | ||||
|                 "xaxis": valid_xs, | ||||
|                 "yaxis": valid_ys, | ||||
|                 "xaxis": xaxis_all, | ||||
|                 "yaxis": yaxis_all, | ||||
|                 "color": "k", | ||||
|                 "s": 10, | ||||
|                 "alpha": 0.99, | ||||
|                 "label": "Timestamp={:02d}".format(timestamp), | ||||
|                 "xlim": (-6, 6), | ||||
|                 "ylim": (-40, 40), | ||||
|                 "label": "LFNA", | ||||
|             } | ||||
|         ) | ||||
| 
 | ||||
|         scatter_list.append( | ||||
|             { | ||||
|                 "xaxis": valid_xs, | ||||
|                 "yaxis": pred_valid_ys, | ||||
|                 "xaxis": cl_xaxis_all, | ||||
|                 "yaxis": cl_yaxis_all, | ||||
|                 "color": "r", | ||||
|                 "s": 10, | ||||
|                 "alpha": 0.5, | ||||
|                 "label": "MLP at now", | ||||
|                 "xlim": (-6, 6 + timestamp * 0.2), | ||||
|                 "ylim": (-200, 40), | ||||
|                 "alpha": 0.99, | ||||
|                 "label": "Continual Learning", | ||||
|             } | ||||
|         ) | ||||
| 
 | ||||
|         draw_fig(save_dir, timestamp, scatter_list) | ||||
|         draw_multi_fig( | ||||
|             save_dir, timestamp, scatter_list, "Timestamp={:03d}".format(timestamp) | ||||
|         ) | ||||
|     print("Save all figures into {:}".format(save_dir)) | ||||
|     save_dir = save_dir.resolve() | ||||
|     cmd = "ffmpeg -y -i {xdir}/%04d.png -pix_fmt yuv420p -vf fps=2 -vf scale=1000:1000 -vb 5000k {xdir}/vis.mp4".format( | ||||
|     cmd = "ffmpeg -y -i {xdir}/%04d.png -pix_fmt yuv420p -vf fps=2 -vf scale=1500:1000 -vb 5000k {xdir}/vis.mp4".format( | ||||
|         xdir=save_dir | ||||
|     ) | ||||
|     os.system(cmd) | ||||
| @@ -133,7 +134,7 @@ def main(save_dir): | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
| 
 | ||||
|     parser = argparse.ArgumentParser("Baseline") | ||||
|     parser = argparse.ArgumentParser("Visualize synthetic data.") | ||||
|     parser.add_argument( | ||||
|         "--save_dir", | ||||
|         type=str, | ||||
| @@ -142,4 +143,4 @@ if __name__ == "__main__": | ||||
|     ) | ||||
|     args = parser.parse_args() | ||||
| 
 | ||||
|     main(args.save_dir) | ||||
|     compare_cl(os.path.join(args.save_dir, "compare-cl")) | ||||
		Reference in New Issue
	
	Block a user