Fix bugs
This commit is contained in:
parent
30fb8fad67
commit
299c8a085b
@ -1,14 +1,18 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/LFNA/basic-prev.py --env_version v1 --prev_time 5 --hidden_dim 16 --epochs 500 --init_lr 0.1
|
||||
# python exps/LFNA/basic-prev.py --env_version v2 --hidden_dim 16 --epochs 1000 --init_lr 0.05
|
||||
# python exps/GeMOSA/basic-prev.py --env_version v1 --prev_time 5 --hidden_dim 16 --epochs 500 --init_lr 0.1
|
||||
# python exps/GeMOSA/basic-prev.py --env_version v2 --hidden_dim 16 --epochs 1000 --init_lr 0.05
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
|
||||
from xautodl.procedures import (
|
||||
prepare_seed,
|
||||
prepare_logger,
|
||||
@ -38,9 +42,9 @@ def subsample(historical_x, historical_y, maxn=10000):
|
||||
|
||||
|
||||
def main(args):
|
||||
logger, env_info, model_kwargs = lfna_setup(args)
|
||||
logger, model_kwargs = lfna_setup(args)
|
||||
|
||||
w_container_per_epoch = dict()
|
||||
w_containers = dict()
|
||||
|
||||
per_timestamp_time, start_time = AverageMeter(), time.time()
|
||||
for idx in range(args.prev_time, env_info["total"]):
|
||||
@ -111,7 +115,7 @@ def main(args):
|
||||
save_path = logger.path(None) / "{:04d}-{:04d}.pth".format(
|
||||
idx, env_info["total"]
|
||||
)
|
||||
w_container_per_epoch[idx] = model.get_w_container().no_grad_clone()
|
||||
w_containers[idx] = model.get_w_container().no_grad_clone()
|
||||
save_checkpoint(
|
||||
{
|
||||
"model_state_dict": model.state_dict(),
|
||||
@ -127,7 +131,7 @@ def main(args):
|
||||
start_time = time.time()
|
||||
|
||||
save_checkpoint(
|
||||
{"w_container_per_epoch": w_container_per_epoch},
|
||||
{"w_containers": w_containers},
|
||||
logger.path(None) / "final-ckp.pth",
|
||||
logger,
|
||||
)
|
||||
|
@ -68,6 +68,8 @@ def main(args):
|
||||
# build model
|
||||
model = get_model(**model_kwargs)
|
||||
model = model.to(args.device)
|
||||
if idx == 0:
|
||||
print(model)
|
||||
# build optimizer
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True)
|
||||
criterion = torch.nn.MSELoss()
|
||||
|
@ -16,7 +16,7 @@ def lfna_setup(args):
|
||||
input_dim=1,
|
||||
output_dim=1,
|
||||
hidden_dims=[args.hidden_dim] * 2,
|
||||
act_cls="gelu",
|
||||
act_cls="relu",
|
||||
norm_cls="layer_norm_1d",
|
||||
)
|
||||
return logger, model_kwargs
|
||||
|
@ -23,10 +23,12 @@ if str(lib_dir) not in sys.path:
|
||||
import qlib
|
||||
from qlib import config as qconfig
|
||||
from qlib.workflow import R
|
||||
qlib.init(provider_uri='~/.qlib/qlib_data/cn_data', region=qconfig.REG_CN)
|
||||
|
||||
qlib.init(provider_uri="~/.qlib/qlib_data/cn_data", region=qconfig.REG_CN)
|
||||
|
||||
from utils.qlib_utils import QResult
|
||||
|
||||
|
||||
def filter_finished(recorders):
|
||||
returned_recorders = dict()
|
||||
not_finished = 0
|
||||
@ -41,9 +43,10 @@ def filter_finished(recorders):
|
||||
def add_to_dict(xdict, timestamp, value):
|
||||
date = timestamp.date().strftime("%Y-%m-%d")
|
||||
if date in xdict:
|
||||
raise ValueError("This date [{:}] is already in the dict".format(date))
|
||||
raise ValueError("This date [{:}] is already in the dict".format(date))
|
||||
xdict[date] = value
|
||||
|
||||
|
||||
def query_info(save_dir, verbose, name_filter, key_map):
|
||||
if isinstance(save_dir, list):
|
||||
results = []
|
||||
@ -61,7 +64,10 @@ def query_info(save_dir, verbose, name_filter, key_map):
|
||||
for idx, (key, experiment) in enumerate(experiments.items()):
|
||||
if experiment.id == "0":
|
||||
continue
|
||||
if name_filter is not None and re.fullmatch(name_filter, experiment.name) is None:
|
||||
if (
|
||||
name_filter is not None
|
||||
and re.fullmatch(name_filter, experiment.name) is None
|
||||
):
|
||||
continue
|
||||
recorders = experiment.list_recorders()
|
||||
recorders, not_finished = filter_finished(recorders)
|
||||
@ -77,10 +83,10 @@ def query_info(save_dir, verbose, name_filter, key_map):
|
||||
)
|
||||
result = QResult(experiment.name)
|
||||
for recorder_id, recorder in recorders.items():
|
||||
file_names = ['results-train.pkl', 'results-valid.pkl', 'results-test.pkl']
|
||||
file_names = ["results-train.pkl", "results-valid.pkl", "results-test.pkl"]
|
||||
date2IC = OrderedDict()
|
||||
for file_name in file_names:
|
||||
xtemp = recorder.load_object(file_name)['all-IC']
|
||||
xtemp = recorder.load_object(file_name)["all-IC"]
|
||||
timestamps, values = xtemp.index.tolist(), xtemp.tolist()
|
||||
for timestamp, value in zip(timestamps, values):
|
||||
add_to_dict(date2IC, timestamp, value)
|
||||
@ -104,7 +110,7 @@ def query_info(save_dir, verbose, name_filter, key_map):
|
||||
|
||||
|
||||
##
|
||||
paths = [root_dir / 'outputs' / 'qlib-baselines-csi300']
|
||||
paths = [root_dir / "outputs" / "qlib-baselines-csi300"]
|
||||
paths = [path.resolve() for path in paths]
|
||||
print(paths)
|
||||
|
||||
@ -112,12 +118,12 @@ key_map = dict()
|
||||
for xset in ("train", "valid", "test"):
|
||||
key_map["{:}-mean-IC".format(xset)] = "IC ({:})".format(xset)
|
||||
key_map["{:}-mean-ICIR".format(xset)] = "ICIR ({:})".format(xset)
|
||||
qresults = query_info(paths, False, 'TSF-2x24-drop0_0s.*-.*-01', key_map)
|
||||
print('Find {:} results'.format(len(qresults)))
|
||||
qresults = query_info(paths, False, "TSF-2x24-drop0_0s.*-.*-01", key_map)
|
||||
print("Find {:} results".format(len(qresults)))
|
||||
times = []
|
||||
for qresult in qresults:
|
||||
times.append(qresult.name.split('0_0s')[-1])
|
||||
times.append(qresult.name.split("0_0s")[-1])
|
||||
print(times)
|
||||
save_path = os.path.join(note_dir, 'temp-time-x.pth')
|
||||
save_path = os.path.join(note_dir, "temp-time-x.pth")
|
||||
torch.save(qresults, save_path)
|
||||
print(save_path)
|
||||
|
@ -24,38 +24,38 @@ from qlib.model.base import Model
|
||||
from qlib.data.dataset import DatasetH
|
||||
from qlib.data.dataset.handler import DataHandlerLP
|
||||
|
||||
qlib.init(provider_uri='~/.qlib/qlib_data/cn_data', region=qconfig.REG_CN)
|
||||
qlib.init(provider_uri="~/.qlib/qlib_data/cn_data", region=qconfig.REG_CN)
|
||||
|
||||
dataset_config = {
|
||||
"class": "DatasetH",
|
||||
"module_path": "qlib.data.dataset",
|
||||
"class": "DatasetH",
|
||||
"module_path": "qlib.data.dataset",
|
||||
"kwargs": {
|
||||
"handler": {
|
||||
"class": "Alpha360",
|
||||
"module_path": "qlib.contrib.data.handler",
|
||||
"kwargs": {
|
||||
"handler": {
|
||||
"class": "Alpha360",
|
||||
"module_path": "qlib.contrib.data.handler",
|
||||
"kwargs": {
|
||||
"start_time": "2008-01-01",
|
||||
"end_time": "2020-08-01",
|
||||
"fit_start_time": "2008-01-01",
|
||||
"fit_end_time": "2014-12-31",
|
||||
"instruments": "csi100",
|
||||
},
|
||||
},
|
||||
"segments": {
|
||||
"train": ("2008-01-01", "2014-12-31"),
|
||||
"valid": ("2015-01-01", "2016-12-31"),
|
||||
"test": ("2017-01-01", "2020-08-01"),
|
||||
},
|
||||
"start_time": "2008-01-01",
|
||||
"end_time": "2020-08-01",
|
||||
"fit_start_time": "2008-01-01",
|
||||
"fit_end_time": "2014-12-31",
|
||||
"instruments": "csi100",
|
||||
},
|
||||
}
|
||||
},
|
||||
"segments": {
|
||||
"train": ("2008-01-01", "2014-12-31"),
|
||||
"valid": ("2015-01-01", "2016-12-31"),
|
||||
"test": ("2017-01-01", "2020-08-01"),
|
||||
},
|
||||
},
|
||||
}
|
||||
pprint.pprint(dataset_config)
|
||||
dataset = init_instance_by_config(dataset_config)
|
||||
|
||||
df_train, df_valid, df_test = dataset.prepare(
|
||||
["train", "valid", "test"],
|
||||
col_set=["feature", "label"],
|
||||
data_key=DataHandlerLP.DK_L,
|
||||
)
|
||||
["train", "valid", "test"],
|
||||
col_set=["feature", "label"],
|
||||
data_key=DataHandlerLP.DK_L,
|
||||
)
|
||||
model = get_transformer(None)
|
||||
print(model)
|
||||
|
||||
@ -72,4 +72,5 @@ label = labels[batch][mask]
|
||||
loss = torch.nn.functional.mse_loss(pred, label)
|
||||
|
||||
from sklearn.metrics import mean_squared_error
|
||||
|
||||
mse_loss = mean_squared_error(pred.numpy(), label.numpy())
|
||||
|
4
setup.py
4
setup.py
@ -37,7 +37,9 @@ def read(fname="README.md"):
|
||||
# What packages are required for this module to be executed?
|
||||
REQUIRED = ["numpy>=1.16.5,<=1.19.5"]
|
||||
|
||||
packages = find_packages(exclude=("tests", "scripts", "scripts-search", "lib*", "exps*"))
|
||||
packages = find_packages(
|
||||
exclude=("tests", "scripts", "scripts-search", "lib*", "exps*")
|
||||
)
|
||||
print("packages: {:}".format(packages))
|
||||
|
||||
setup(
|
||||
|
@ -64,65 +64,29 @@ class ComposedSinFunc(FitFunc):
|
||||
)
|
||||
|
||||
|
||||
class ComposedSinFuncV2(FitFunc):
|
||||
class ComposedCosFunc(FitFunc):
|
||||
"""The composed sin function that outputs:
|
||||
f(x) = amplitude-scale-of(x) * sin( period-phase-shift-of(x) )
|
||||
- the amplitude scale is a quadratic function of x
|
||||
- the period-phase-shift is another quadratic function of x
|
||||
f(x) = a * cos( b*x ) + c
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super(ComposedSinFuncV2, self).__init__(0, None)
|
||||
self.fit(**kwargs)
|
||||
def __init__(self, params, xstr="x"):
|
||||
super(ComposedCosFunc, self).__init__(3, None, params, xstr)
|
||||
|
||||
def __call__(self, x):
|
||||
self.check_valid()
|
||||
scale = self._params["amplitude_scale"](x)
|
||||
period_phase = self._params["period_phase_shift"](x)
|
||||
return scale * math.sin(period_phase)
|
||||
|
||||
def fit(self, **kwargs):
|
||||
num_sin_phase = kwargs.get("num_sin_phase", 7)
|
||||
sin_speed_use_power = kwargs.get("sin_speed_use_power", True)
|
||||
min_amplitude = kwargs.get("min_amplitude", 1)
|
||||
max_amplitude = kwargs.get("max_amplitude", 4)
|
||||
phase_shift = kwargs.get("phase_shift", 0.0)
|
||||
# create parameters
|
||||
if kwargs.get("amplitude_scale", None) is None:
|
||||
amplitude_scale = QuadraticFunc(
|
||||
[(0, min_amplitude), (0.5, max_amplitude), (1, min_amplitude)]
|
||||
)
|
||||
else:
|
||||
amplitude_scale = kwargs.get("amplitude_scale")
|
||||
if kwargs.get("period_phase_shift", None) is None:
|
||||
fitting_data = []
|
||||
if sin_speed_use_power:
|
||||
temp_max_scalar = 2 ** (num_sin_phase - 1)
|
||||
else:
|
||||
temp_max_scalar = num_sin_phase - 1
|
||||
for i in range(num_sin_phase):
|
||||
if sin_speed_use_power:
|
||||
value = (2 ** i) / temp_max_scalar
|
||||
next_value = (2 ** (i + 1)) / temp_max_scalar
|
||||
else:
|
||||
value = i / temp_max_scalar
|
||||
next_value = (i + 1) / temp_max_scalar
|
||||
for _phase in (0, 0.25, 0.5, 0.75):
|
||||
inter_value = value + (next_value - value) * _phase
|
||||
fitting_data.append((inter_value, math.pi * (2 * i + _phase)))
|
||||
period_phase_shift = QuarticFunc(fitting_data)
|
||||
else:
|
||||
period_phase_shift = kwargs.get("period_phase_shift")
|
||||
self.set(
|
||||
dict(amplitude_scale=amplitude_scale, period_phase_shift=period_phase_shift)
|
||||
)
|
||||
a = self._params[0]
|
||||
b = self._params[1]
|
||||
c = self._params[2]
|
||||
return a * math.cos(b * x) + c
|
||||
|
||||
def _getitem(self, x, weights):
|
||||
raise NotImplementedError
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}({amplitude_scale} * sin({period_phase_shift}))".format(
|
||||
return "{name}({a} * sin({b} * {x}) + {c})".format(
|
||||
name=self.__class__.__name__,
|
||||
amplitude_scale=self._params["amplitude_scale"],
|
||||
period_phase_shift=self._params["period_phase_shift"],
|
||||
a=self._params[0],
|
||||
b=self._params[1],
|
||||
c=self._params[2],
|
||||
x=self.xstr,
|
||||
)
|
||||
|
@ -5,5 +5,5 @@ from .math_base_funcs import LinearFunc, QuadraticFunc, CubicFunc, QuarticFunc
|
||||
from .math_dynamic_funcs import DynamicLinearFunc
|
||||
from .math_dynamic_funcs import DynamicQuadraticFunc
|
||||
from .math_adv_funcs import ConstantFunc
|
||||
from .math_adv_funcs import ComposedSinFunc
|
||||
from .math_adv_funcs import ComposedSinFunc, ComposedCosFunc
|
||||
from .math_dynamic_generator import GaussianDGenerator
|
||||
|
@ -4,7 +4,11 @@ from .synthetic_env import SyntheticDEnv
|
||||
from .math_core import LinearFunc
|
||||
from .math_core import DynamicLinearFunc
|
||||
from .math_core import DynamicQuadraticFunc
|
||||
from .math_core import ConstantFunc, ComposedSinFunc as SinFunc
|
||||
from .math_core import (
|
||||
ConstantFunc,
|
||||
ComposedSinFunc as SinFunc,
|
||||
ComposedCosFunc as CosFunc,
|
||||
)
|
||||
from .math_core import GaussianDGenerator
|
||||
|
||||
|
||||
@ -50,6 +54,25 @@ def get_synthetic_env(total_timestamp=1600, num_per_task=1000, mode=None, versio
|
||||
dynamic_env = SyntheticDEnv(
|
||||
data_generator, oracle_map, time_generator, num_per_task
|
||||
)
|
||||
elif version.lower() == "v3":
|
||||
mean_generator = SinFunc(params={0: 1, 1: 1, 2: 0}) # sin(t)
|
||||
std_generator = CosFunc(params={0: 0.5, 1: 1, 2: 1}) # 0.5 cos(t) + 1
|
||||
data_generator = GaussianDGenerator(
|
||||
[mean_generator], [[std_generator]], (-2, 2)
|
||||
)
|
||||
time_generator = TimeStamp(
|
||||
min_timestamp=0, max_timestamp=max_time, num=total_timestamp, mode=mode
|
||||
)
|
||||
oracle_map = DynamicQuadraticFunc(
|
||||
params={
|
||||
0: LinearFunc(params={0: 0.1, 1: 0}), # 0.1 * t
|
||||
1: SinFunc(params={0: 1, 1: 1, 2: 0}), # sin(t)
|
||||
2: ConstantFunc(0),
|
||||
}
|
||||
)
|
||||
dynamic_env = SyntheticDEnv(
|
||||
data_generator, oracle_map, time_generator, num_per_task
|
||||
)
|
||||
else:
|
||||
raise ValueError("Unknown version: {:}".format(version))
|
||||
return dynamic_env
|
||||
|
@ -39,9 +39,9 @@ def get_model(config: Dict[Text, Any], **kwargs):
|
||||
norm_cls = super_name2norm[kwargs["norm_cls"]]
|
||||
sub_layers, last_dim = [], kwargs["input_dim"]
|
||||
for i, hidden_dim in enumerate(kwargs["hidden_dims"]):
|
||||
sub_layers.append(SuperLinear(last_dim, hidden_dim))
|
||||
if hidden_dim > 1:
|
||||
sub_layers.append(norm_cls(hidden_dim, elementwise_affine=False))
|
||||
sub_layers.append(SuperLinear(last_dim, hidden_dim))
|
||||
sub_layers.append(act_cls())
|
||||
last_dim = hidden_dim
|
||||
sub_layers.append(SuperLinear(last_dim, kwargs["output_dim"]))
|
||||
|
@ -1,5 +1,5 @@
|
||||
# Performance-Aware Template Network for One-Shot Neural Architecture Search
|
||||
from .CifarNet import NetworkCIFAR as CifarNet
|
||||
from .ImageNet import NetworkImageNet as ImageNet
|
||||
from .CifarNet import NetworkCIFAR as CifarNet
|
||||
from .ImageNet import NetworkImageNet as ImageNet
|
||||
from .genotypes import Networks
|
||||
from .genotypes import build_genotype_from_dict
|
||||
|
@ -8,24 +8,44 @@
|
||||
|
||||
import os, torch
|
||||
|
||||
|
||||
def obtain_nas_infer_model(config, extra_model_path=None):
|
||||
|
||||
if config.arch == 'dxys':
|
||||
from .DXYs import CifarNet, ImageNet, Networks
|
||||
from .DXYs import build_genotype_from_dict
|
||||
if config.genotype is None:
|
||||
if extra_model_path is not None and not os.path.isfile(extra_model_path):
|
||||
raise ValueError('When genotype in confiig is None, extra_model_path must be set as a path instead of {:}'.format(extra_model_path))
|
||||
xdata = torch.load(extra_model_path)
|
||||
current_epoch = xdata['epoch']
|
||||
genotype_dict = xdata['genotypes'][current_epoch-1]
|
||||
genotype = build_genotype_from_dict(genotype_dict)
|
||||
|
||||
if config.arch == "dxys":
|
||||
from .DXYs import CifarNet, ImageNet, Networks
|
||||
from .DXYs import build_genotype_from_dict
|
||||
|
||||
if config.genotype is None:
|
||||
if extra_model_path is not None and not os.path.isfile(extra_model_path):
|
||||
raise ValueError(
|
||||
"When genotype in confiig is None, extra_model_path must be set as a path instead of {:}".format(
|
||||
extra_model_path
|
||||
)
|
||||
)
|
||||
xdata = torch.load(extra_model_path)
|
||||
current_epoch = xdata["epoch"]
|
||||
genotype_dict = xdata["genotypes"][current_epoch - 1]
|
||||
genotype = build_genotype_from_dict(genotype_dict)
|
||||
else:
|
||||
genotype = Networks[config.genotype]
|
||||
if config.dataset == "cifar":
|
||||
return CifarNet(
|
||||
config.ichannel,
|
||||
config.layers,
|
||||
config.stem_multi,
|
||||
config.auxiliary,
|
||||
genotype,
|
||||
config.class_num,
|
||||
)
|
||||
elif config.dataset == "imagenet":
|
||||
return ImageNet(
|
||||
config.ichannel,
|
||||
config.layers,
|
||||
config.auxiliary,
|
||||
genotype,
|
||||
config.class_num,
|
||||
)
|
||||
else:
|
||||
raise ValueError("invalid dataset : {:}".format(config.dataset))
|
||||
else:
|
||||
genotype = Networks[config.genotype]
|
||||
if config.dataset == 'cifar':
|
||||
return CifarNet(config.ichannel, config.layers, config.stem_multi, config.auxiliary, genotype, config.class_num)
|
||||
elif config.dataset == 'imagenet':
|
||||
return ImageNet(config.ichannel, config.layers, config.auxiliary, genotype, config.class_num)
|
||||
else: raise ValueError('invalid dataset : {:}'.format(config.dataset))
|
||||
else:
|
||||
raise ValueError('invalid nas arch type : {:}'.format(config.arch))
|
||||
raise ValueError("invalid nas arch type : {:}".format(config.arch))
|
||||
|
Loading…
Reference in New Issue
Block a user