Update baselines
This commit is contained in:
parent
2e0325ca63
commit
2fa358fdf6
@ -1 +1 @@
|
||||
Subproject commit b14a559a52efb6a9c2271402267fb7bd88bd73d3
|
||||
Subproject commit 49697b1f1568608e3077450b72fe3ed5b92ec1e5
|
83
configs/qlib/workflow_config_alstm_Alpha360.yaml
Normal file
83
configs/qlib/workflow_config_alstm_Alpha360.yaml
Normal file
@ -0,0 +1,83 @@
|
||||
qlib_init:
|
||||
provider_uri: "~/.qlib/qlib_data/cn_data"
|
||||
region: cn
|
||||
market: &market all
|
||||
benchmark: &benchmark SH000300
|
||||
data_handler_config: &data_handler_config
|
||||
start_time: 2008-01-01
|
||||
end_time: 2020-08-01
|
||||
fit_start_time: 2008-01-01
|
||||
fit_end_time: 2014-12-31
|
||||
instruments: *market
|
||||
infer_processors:
|
||||
- class: RobustZScoreNorm
|
||||
kwargs:
|
||||
fields_group: feature
|
||||
clip_outlier: true
|
||||
- class: Fillna
|
||||
kwargs:
|
||||
fields_group: feature
|
||||
learn_processors:
|
||||
- class: DropnaLabel
|
||||
- class: CSRankNorm
|
||||
kwargs:
|
||||
fields_group: label
|
||||
label: ["Ref($close, -2) / Ref($close, -1) - 1"]
|
||||
port_analysis_config: &port_analysis_config
|
||||
strategy:
|
||||
class: TopkDropoutStrategy
|
||||
module_path: qlib.contrib.strategy.strategy
|
||||
kwargs:
|
||||
topk: 50
|
||||
n_drop: 5
|
||||
backtest:
|
||||
verbose: False
|
||||
limit_threshold: 0.095
|
||||
account: 100000000
|
||||
benchmark: *benchmark
|
||||
deal_price: close
|
||||
open_cost: 0.0005
|
||||
close_cost: 0.0015
|
||||
min_cost: 5
|
||||
task:
|
||||
model:
|
||||
class: ALSTM
|
||||
module_path: qlib.contrib.model.pytorch_alstm
|
||||
kwargs:
|
||||
d_feat: 6
|
||||
hidden_size: 64
|
||||
num_layers: 2
|
||||
dropout: 0.0
|
||||
n_epochs: 200
|
||||
lr: 1e-3
|
||||
early_stop: 20
|
||||
batch_size: 800
|
||||
metric: loss
|
||||
loss: mse
|
||||
GPU: 0
|
||||
rnn_type: GRU
|
||||
dataset:
|
||||
class: DatasetH
|
||||
module_path: qlib.data.dataset
|
||||
kwargs:
|
||||
handler:
|
||||
class: Alpha360
|
||||
module_path: qlib.contrib.data.handler
|
||||
kwargs: *data_handler_config
|
||||
segments:
|
||||
train: [2008-01-01, 2014-12-31]
|
||||
valid: [2015-01-01, 2016-12-31]
|
||||
test: [2017-01-01, 2020-08-01]
|
||||
record:
|
||||
- class: SignalRecord
|
||||
module_path: qlib.workflow.record_temp
|
||||
kwargs: {}
|
||||
- class: SigAnaRecord
|
||||
module_path: qlib.workflow.record_temp
|
||||
kwargs:
|
||||
ana_long_short: False
|
||||
ann_scaler: 252
|
||||
- class: PortAnaRecord
|
||||
module_path: qlib.workflow.record_temp
|
||||
kwargs:
|
||||
config: *port_analysis_config
|
73
configs/qlib/workflow_config_lightgbm_Alpha360.yaml
Normal file
73
configs/qlib/workflow_config_lightgbm_Alpha360.yaml
Normal file
@ -0,0 +1,73 @@
|
||||
qlib_init:
|
||||
provider_uri: "~/.qlib/qlib_data/cn_data"
|
||||
region: cn
|
||||
market: &market all
|
||||
benchmark: &benchmark SH000300
|
||||
data_handler_config: &data_handler_config
|
||||
start_time: 2008-01-01
|
||||
end_time: 2020-08-01
|
||||
fit_start_time: 2008-01-01
|
||||
fit_end_time: 2014-12-31
|
||||
instruments: *market
|
||||
infer_processors: []
|
||||
learn_processors:
|
||||
- class: DropnaLabel
|
||||
- class: CSRankNorm
|
||||
kwargs:
|
||||
fields_group: label
|
||||
label: ["Ref($close, -2) / Ref($close, -1) - 1"]
|
||||
port_analysis_config: &port_analysis_config
|
||||
strategy:
|
||||
class: TopkDropoutStrategy
|
||||
module_path: qlib.contrib.strategy.strategy
|
||||
kwargs:
|
||||
topk: 50
|
||||
n_drop: 5
|
||||
backtest:
|
||||
verbose: False
|
||||
limit_threshold: 0.095
|
||||
account: 100000000
|
||||
benchmark: *benchmark
|
||||
deal_price: close
|
||||
open_cost: 0.0005
|
||||
close_cost: 0.0015
|
||||
min_cost: 5
|
||||
task:
|
||||
model:
|
||||
class: LGBModel
|
||||
module_path: qlib.contrib.model.gbdt
|
||||
kwargs:
|
||||
loss: mse
|
||||
colsample_bytree: 0.8879
|
||||
learning_rate: 0.0421
|
||||
subsample: 0.8789
|
||||
lambda_l1: 205.6999
|
||||
lambda_l2: 580.9768
|
||||
max_depth: 8
|
||||
num_leaves: 210
|
||||
num_threads: 20
|
||||
dataset:
|
||||
class: DatasetH
|
||||
module_path: qlib.data.dataset
|
||||
kwargs:
|
||||
handler:
|
||||
class: Alpha360
|
||||
module_path: qlib.contrib.data.handler
|
||||
kwargs: *data_handler_config
|
||||
segments:
|
||||
train: [2008-01-01, 2014-12-31]
|
||||
valid: [2015-01-01, 2016-12-31]
|
||||
test: [2017-01-01, 2020-08-01]
|
||||
record:
|
||||
- class: SignalRecord
|
||||
module_path: qlib.workflow.record_temp
|
||||
kwargs: {}
|
||||
- class: SigAnaRecord
|
||||
module_path: qlib.workflow.record_temp
|
||||
kwargs:
|
||||
ana_long_short: False
|
||||
ann_scaler: 252
|
||||
- class: PortAnaRecord
|
||||
module_path: qlib.workflow.record_temp
|
||||
kwargs:
|
||||
config: *port_analysis_config
|
127
exps/trading/baselines.py
Normal file
127
exps/trading/baselines.py
Normal file
@ -0,0 +1,127 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
|
||||
#####################################################
|
||||
# python exps/trading/baselines.py --alg GRU
|
||||
# python exps/trading/baselines.py --alg LSTM
|
||||
# python exps/trading/baselines.py --alg ALSTM
|
||||
# python exps/trading/baselines.py --alg XGBoost
|
||||
# python exps/trading/baselines.py --alg LightGBM
|
||||
#####################################################
|
||||
import sys, argparse
|
||||
from collections import OrderedDict
|
||||
from pathlib import Path
|
||||
from pprint import pprint
|
||||
import ruamel.yaml as yaml
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
|
||||
import qlib
|
||||
from qlib.utils import init_instance_by_config
|
||||
from qlib.workflow import R
|
||||
from qlib.utils import flatten_dict
|
||||
from qlib.log import set_log_basic_config
|
||||
|
||||
|
||||
def retrieve_configs():
|
||||
# https://github.com/microsoft/qlib/blob/main/examples/benchmarks/
|
||||
config_dir = (lib_dir / ".." / "configs" / "qlib").resolve()
|
||||
# algorithm to file names
|
||||
alg2names = OrderedDict()
|
||||
alg2names["GRU"] = "workflow_config_gru_Alpha360.yaml"
|
||||
alg2names["LSTM"] = "workflow_config_lstm_Alpha360.yaml"
|
||||
# A dual-stage attention-based recurrent neural network for time series prediction, IJCAI-2017
|
||||
alg2names["ALSTM"] = "workflow_config_alstm_Alpha360.yaml"
|
||||
# XGBoost: A Scalable Tree Boosting System, KDD-2016
|
||||
alg2names["XGBoost"] = "workflow_config_xgboost_Alpha360.yaml"
|
||||
# LightGBM: A Highly Efficient Gradient Boosting Decision Tree, NeurIPS-2017
|
||||
alg2names["LightGBM"] = "workflow_config_lightgbm_Alpha360.yaml"
|
||||
|
||||
# find the yaml paths
|
||||
alg2paths = OrderedDict()
|
||||
for idx, (alg, name) in enumerate(alg2names.items()):
|
||||
path = config_dir / name
|
||||
assert path.exists(), "{:} does not exist.".format(path)
|
||||
alg2paths[alg] = str(path)
|
||||
print("The {:02d}/{:02d}-th baseline algorithm is {:9s} ({:}).".format(idx, len(alg2names), alg, path))
|
||||
return alg2paths
|
||||
|
||||
|
||||
def update_gpu(config, gpu):
|
||||
config = config.copy()
|
||||
if "GPU" in config["task"]["model"]:
|
||||
config["task"]["model"]["GPU"] = gpu
|
||||
return config
|
||||
|
||||
|
||||
def update_market(config, market):
|
||||
config = config.copy()
|
||||
config["market"] = market
|
||||
config["data_handler_config"]["instruments"] = market
|
||||
return config
|
||||
|
||||
|
||||
def run_exp(task_config, dataset, experiment_name, recorder_name, uri):
|
||||
|
||||
# model initiaiton
|
||||
model = init_instance_by_config(task_config["model"])
|
||||
|
||||
# start exp
|
||||
with R.start(experiment_name=experiment_name, recorder_name=recorder_name, uri=uri):
|
||||
|
||||
log_file = R.get_recorder().root_uri / '{:}.log'.format(experiment_name)
|
||||
set_log_basic_config(log_file)
|
||||
|
||||
# train model
|
||||
R.log_params(**flatten_dict(task_config))
|
||||
model.fit(dataset)
|
||||
recorder = R.get_recorder()
|
||||
R.save_objects(**{"model.pkl": model})
|
||||
|
||||
# generate records: prediction, backtest, and analysis
|
||||
for record in task_config["record"]:
|
||||
record = record.copy()
|
||||
if record["class"] == "SignalRecord":
|
||||
srconf = {"model": model, "dataset": dataset, "recorder": recorder}
|
||||
record["kwargs"].update(srconf)
|
||||
sr = init_instance_by_config(record)
|
||||
sr.generate()
|
||||
else:
|
||||
rconf = {"recorder": recorder}
|
||||
record["kwargs"].update(rconf)
|
||||
ar = init_instance_by_config(record)
|
||||
ar.generate()
|
||||
|
||||
|
||||
def main(xargs, exp_yaml):
|
||||
assert Path(exp_yaml).exists(), "{:} does not exist.".format(exp_yaml)
|
||||
|
||||
with open(exp_yaml) as fp:
|
||||
config = yaml.safe_load(fp)
|
||||
config = update_gpu(config, xargs.gpu)
|
||||
# config = update_market(config, 'csi300')
|
||||
|
||||
qlib.init(**config.get("qlib_init"))
|
||||
dataset_config = config.get("task").get("dataset")
|
||||
dataset = init_instance_by_config(dataset_config)
|
||||
pprint('args: {:}'.format(xargs))
|
||||
pprint(dataset_config)
|
||||
pprint(dataset)
|
||||
|
||||
for irun in range(xargs.times):
|
||||
run_exp(config.get("task"), dataset, xargs.alg, "recorder-{:02d}-{:02d}".format(irun, xargs.times), xargs.save_dir)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
alg2paths = retrieve_configs()
|
||||
|
||||
parser = argparse.ArgumentParser("Baselines")
|
||||
parser.add_argument("--save_dir", type=str, default="./outputs/qlib-baselines", help="The checkpoint directory.")
|
||||
parser.add_argument("--times", type=int, default=10, help="The repeated run times.")
|
||||
parser.add_argument("--gpu", type=int, default=0, help="The GPU ID used for train / test.")
|
||||
parser.add_argument("--alg", type=str, choices=list(alg2paths.keys()), required=True, help="The algorithm name.")
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args, alg2paths[args.alg])
|
@ -104,7 +104,7 @@ def main(xargs):
|
||||
|
||||
|
||||
# start exp to train model
|
||||
with R.start(experiment_name="train_tt_model"):
|
||||
with R.start(experiment_name="tt_model", uri=xargs.save_dir):
|
||||
set_log_basic_config(R.get_recorder().root_uri / 'log.log')
|
||||
|
||||
model = init_instance_by_config(model_config)
|
||||
@ -139,8 +139,6 @@ if __name__ == "__main__":
|
||||
args = parser.parse_args()
|
||||
|
||||
provider_uri = "~/.qlib/qlib_data/cn_data" # target_dir
|
||||
exp_manager = C.exp_manager
|
||||
exp_manager["kwargs"]["uri"] = "file:{:}".format(Path(args.save_dir).resolve())
|
||||
qlib.init(provider_uri=provider_uri, region=REG_CN, exp_manager=exp_manager)
|
||||
qlib.init(provider_uri=provider_uri, region=REG_CN)
|
||||
|
||||
main(args)
|
||||
|
Loading…
Reference in New Issue
Block a user