Update baselines

This commit is contained in:
D-X-Y 2021-03-05 13:11:26 +00:00
parent 2e0325ca63
commit 2fa358fdf6
5 changed files with 286 additions and 5 deletions

@ -1 +1 @@
Subproject commit b14a559a52efb6a9c2271402267fb7bd88bd73d3 Subproject commit 49697b1f1568608e3077450b72fe3ed5b92ec1e5

View File

@ -0,0 +1,83 @@
qlib_init:
provider_uri: "~/.qlib/qlib_data/cn_data"
region: cn
market: &market all
benchmark: &benchmark SH000300
data_handler_config: &data_handler_config
start_time: 2008-01-01
end_time: 2020-08-01
fit_start_time: 2008-01-01
fit_end_time: 2014-12-31
instruments: *market
infer_processors:
- class: RobustZScoreNorm
kwargs:
fields_group: feature
clip_outlier: true
- class: Fillna
kwargs:
fields_group: feature
learn_processors:
- class: DropnaLabel
- class: CSRankNorm
kwargs:
fields_group: label
label: ["Ref($close, -2) / Ref($close, -1) - 1"]
port_analysis_config: &port_analysis_config
strategy:
class: TopkDropoutStrategy
module_path: qlib.contrib.strategy.strategy
kwargs:
topk: 50
n_drop: 5
backtest:
verbose: False
limit_threshold: 0.095
account: 100000000
benchmark: *benchmark
deal_price: close
open_cost: 0.0005
close_cost: 0.0015
min_cost: 5
task:
model:
class: ALSTM
module_path: qlib.contrib.model.pytorch_alstm
kwargs:
d_feat: 6
hidden_size: 64
num_layers: 2
dropout: 0.0
n_epochs: 200
lr: 1e-3
early_stop: 20
batch_size: 800
metric: loss
loss: mse
GPU: 0
rnn_type: GRU
dataset:
class: DatasetH
module_path: qlib.data.dataset
kwargs:
handler:
class: Alpha360
module_path: qlib.contrib.data.handler
kwargs: *data_handler_config
segments:
train: [2008-01-01, 2014-12-31]
valid: [2015-01-01, 2016-12-31]
test: [2017-01-01, 2020-08-01]
record:
- class: SignalRecord
module_path: qlib.workflow.record_temp
kwargs: {}
- class: SigAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
ana_long_short: False
ann_scaler: 252
- class: PortAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
config: *port_analysis_config

View File

@ -0,0 +1,73 @@
qlib_init:
provider_uri: "~/.qlib/qlib_data/cn_data"
region: cn
market: &market all
benchmark: &benchmark SH000300
data_handler_config: &data_handler_config
start_time: 2008-01-01
end_time: 2020-08-01
fit_start_time: 2008-01-01
fit_end_time: 2014-12-31
instruments: *market
infer_processors: []
learn_processors:
- class: DropnaLabel
- class: CSRankNorm
kwargs:
fields_group: label
label: ["Ref($close, -2) / Ref($close, -1) - 1"]
port_analysis_config: &port_analysis_config
strategy:
class: TopkDropoutStrategy
module_path: qlib.contrib.strategy.strategy
kwargs:
topk: 50
n_drop: 5
backtest:
verbose: False
limit_threshold: 0.095
account: 100000000
benchmark: *benchmark
deal_price: close
open_cost: 0.0005
close_cost: 0.0015
min_cost: 5
task:
model:
class: LGBModel
module_path: qlib.contrib.model.gbdt
kwargs:
loss: mse
colsample_bytree: 0.8879
learning_rate: 0.0421
subsample: 0.8789
lambda_l1: 205.6999
lambda_l2: 580.9768
max_depth: 8
num_leaves: 210
num_threads: 20
dataset:
class: DatasetH
module_path: qlib.data.dataset
kwargs:
handler:
class: Alpha360
module_path: qlib.contrib.data.handler
kwargs: *data_handler_config
segments:
train: [2008-01-01, 2014-12-31]
valid: [2015-01-01, 2016-12-31]
test: [2017-01-01, 2020-08-01]
record:
- class: SignalRecord
module_path: qlib.workflow.record_temp
kwargs: {}
- class: SigAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
ana_long_short: False
ann_scaler: 252
- class: PortAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
config: *port_analysis_config

127
exps/trading/baselines.py Normal file
View File

@ -0,0 +1,127 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
#####################################################
# python exps/trading/baselines.py --alg GRU
# python exps/trading/baselines.py --alg LSTM
# python exps/trading/baselines.py --alg ALSTM
# python exps/trading/baselines.py --alg XGBoost
# python exps/trading/baselines.py --alg LightGBM
#####################################################
import sys, argparse
from collections import OrderedDict
from pathlib import Path
from pprint import pprint
import ruamel.yaml as yaml
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
import qlib
from qlib.utils import init_instance_by_config
from qlib.workflow import R
from qlib.utils import flatten_dict
from qlib.log import set_log_basic_config
def retrieve_configs():
# https://github.com/microsoft/qlib/blob/main/examples/benchmarks/
config_dir = (lib_dir / ".." / "configs" / "qlib").resolve()
# algorithm to file names
alg2names = OrderedDict()
alg2names["GRU"] = "workflow_config_gru_Alpha360.yaml"
alg2names["LSTM"] = "workflow_config_lstm_Alpha360.yaml"
# A dual-stage attention-based recurrent neural network for time series prediction, IJCAI-2017
alg2names["ALSTM"] = "workflow_config_alstm_Alpha360.yaml"
# XGBoost: A Scalable Tree Boosting System, KDD-2016
alg2names["XGBoost"] = "workflow_config_xgboost_Alpha360.yaml"
# LightGBM: A Highly Efficient Gradient Boosting Decision Tree, NeurIPS-2017
alg2names["LightGBM"] = "workflow_config_lightgbm_Alpha360.yaml"
# find the yaml paths
alg2paths = OrderedDict()
for idx, (alg, name) in enumerate(alg2names.items()):
path = config_dir / name
assert path.exists(), "{:} does not exist.".format(path)
alg2paths[alg] = str(path)
print("The {:02d}/{:02d}-th baseline algorithm is {:9s} ({:}).".format(idx, len(alg2names), alg, path))
return alg2paths
def update_gpu(config, gpu):
config = config.copy()
if "GPU" in config["task"]["model"]:
config["task"]["model"]["GPU"] = gpu
return config
def update_market(config, market):
config = config.copy()
config["market"] = market
config["data_handler_config"]["instruments"] = market
return config
def run_exp(task_config, dataset, experiment_name, recorder_name, uri):
# model initiaiton
model = init_instance_by_config(task_config["model"])
# start exp
with R.start(experiment_name=experiment_name, recorder_name=recorder_name, uri=uri):
log_file = R.get_recorder().root_uri / '{:}.log'.format(experiment_name)
set_log_basic_config(log_file)
# train model
R.log_params(**flatten_dict(task_config))
model.fit(dataset)
recorder = R.get_recorder()
R.save_objects(**{"model.pkl": model})
# generate records: prediction, backtest, and analysis
for record in task_config["record"]:
record = record.copy()
if record["class"] == "SignalRecord":
srconf = {"model": model, "dataset": dataset, "recorder": recorder}
record["kwargs"].update(srconf)
sr = init_instance_by_config(record)
sr.generate()
else:
rconf = {"recorder": recorder}
record["kwargs"].update(rconf)
ar = init_instance_by_config(record)
ar.generate()
def main(xargs, exp_yaml):
assert Path(exp_yaml).exists(), "{:} does not exist.".format(exp_yaml)
with open(exp_yaml) as fp:
config = yaml.safe_load(fp)
config = update_gpu(config, xargs.gpu)
# config = update_market(config, 'csi300')
qlib.init(**config.get("qlib_init"))
dataset_config = config.get("task").get("dataset")
dataset = init_instance_by_config(dataset_config)
pprint('args: {:}'.format(xargs))
pprint(dataset_config)
pprint(dataset)
for irun in range(xargs.times):
run_exp(config.get("task"), dataset, xargs.alg, "recorder-{:02d}-{:02d}".format(irun, xargs.times), xargs.save_dir)
if __name__ == "__main__":
alg2paths = retrieve_configs()
parser = argparse.ArgumentParser("Baselines")
parser.add_argument("--save_dir", type=str, default="./outputs/qlib-baselines", help="The checkpoint directory.")
parser.add_argument("--times", type=int, default=10, help="The repeated run times.")
parser.add_argument("--gpu", type=int, default=0, help="The GPU ID used for train / test.")
parser.add_argument("--alg", type=str, choices=list(alg2paths.keys()), required=True, help="The algorithm name.")
args = parser.parse_args()
main(args, alg2paths[args.alg])

View File

@ -104,7 +104,7 @@ def main(xargs):
# start exp to train model # start exp to train model
with R.start(experiment_name="train_tt_model"): with R.start(experiment_name="tt_model", uri=xargs.save_dir):
set_log_basic_config(R.get_recorder().root_uri / 'log.log') set_log_basic_config(R.get_recorder().root_uri / 'log.log')
model = init_instance_by_config(model_config) model = init_instance_by_config(model_config)
@ -139,8 +139,6 @@ if __name__ == "__main__":
args = parser.parse_args() args = parser.parse_args()
provider_uri = "~/.qlib/qlib_data/cn_data" # target_dir provider_uri = "~/.qlib/qlib_data/cn_data" # target_dir
exp_manager = C.exp_manager qlib.init(provider_uri=provider_uri, region=REG_CN)
exp_manager["kwargs"]["uri"] = "file:{:}".format(Path(args.save_dir).resolve())
qlib.init(provider_uri=provider_uri, region=REG_CN, exp_manager=exp_manager)
main(args) main(args)