Update codes for draw
This commit is contained in:
		
							
								
								
									
										133
									
								
								exps/NATS-Bench/draw-fig6.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										133
									
								
								exps/NATS-Bench/draw-fig6.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,133 @@ | ||||
| ############################################################### | ||||
| # NATS-Bench (https://arxiv.org/pdf/2009.00437.pdf)           # | ||||
| # The code to draw Figure 6 in our paper.                     # | ||||
| ############################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06           # | ||||
| ############################################################### | ||||
| # Usage: python exps/NATS-Bench/draw-fig6.py --search_space tss | ||||
| # Usage: python exps/NATS-Bench/draw-fig6.py --search_space sss | ||||
| ############################################################### | ||||
| import os, gc, sys, time, torch, argparse | ||||
| import numpy as np | ||||
| from typing import List, Text, Dict, Any | ||||
| from shutil import copyfile | ||||
| from collections import defaultdict, OrderedDict | ||||
| from copy    import deepcopy | ||||
| from pathlib import Path | ||||
| import matplotlib | ||||
| import seaborn as sns | ||||
| matplotlib.use('agg') | ||||
| import matplotlib.pyplot as plt | ||||
| import matplotlib.ticker as ticker | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import dict2config, load_config | ||||
| from nats_bench import create | ||||
| from log_utils import time_string | ||||
|  | ||||
|  | ||||
| def fetch_data(root_dir='./output/search', search_space='tss', dataset=None): | ||||
|   ss_dir = '{:}-{:}'.format(root_dir, search_space) | ||||
|   alg2name, alg2path = OrderedDict(), OrderedDict() | ||||
|   alg2name['REA'] = 'R-EA-SS3' | ||||
|   alg2name['REINFORCE'] = 'REINFORCE-0.01' | ||||
|   alg2name['RANDOM'] = 'RANDOM' | ||||
|   alg2name['BOHB'] = 'BOHB' | ||||
|   for alg, name in alg2name.items(): | ||||
|     alg2path[alg] = os.path.join(ss_dir, dataset, name, 'results.pth') | ||||
|     assert os.path.isfile(alg2path[alg]), 'invalid path : {:}'.format(alg2path[alg]) | ||||
|   alg2data = OrderedDict() | ||||
|   for alg, path in alg2path.items(): | ||||
|     data = torch.load(path) | ||||
|     for index, info in data.items(): | ||||
|       info['time_w_arch'] = [(x, y) for x, y in zip(info['all_total_times'], info['all_archs'])] | ||||
|       for j, arch in enumerate(info['all_archs']): | ||||
|         assert arch != -1, 'invalid arch from {:} {:} {:} ({:}, {:})'.format(alg, search_space, dataset, index, j) | ||||
|     alg2data[alg] = data | ||||
|   return alg2data | ||||
|  | ||||
|  | ||||
| def query_performance(api, data, dataset, ticket): | ||||
|   results, is_size_space = [], api.search_space_name == 'size' | ||||
|   for i, info in data.items(): | ||||
|     time_w_arch = sorted(info['time_w_arch'], key=lambda x: abs(x[0]-ticket)) | ||||
|     time_a, arch_a = time_w_arch[0] | ||||
|     time_b, arch_b = time_w_arch[1] | ||||
|     info_a = api.get_more_info(arch_a, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|     info_b = api.get_more_info(arch_b, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|     accuracy_a, accuracy_b = info_a['test-accuracy'], info_b['test-accuracy'] | ||||
|     interplate = (time_b-ticket) / (time_b-time_a) * accuracy_a + (ticket-time_a) / (time_b-time_a) * accuracy_b | ||||
|     results.append(interplate) | ||||
|   return sum(results) / len(results) | ||||
|  | ||||
|  | ||||
| y_min_s = {('cifar10', 'tss'): 90, | ||||
|            ('cifar10', 'sss'): 92, | ||||
|            ('cifar100', 'tss'): 65, | ||||
|            ('cifar100', 'sss'): 65, | ||||
|            ('ImageNet16-120', 'tss'): 36, | ||||
|            ('ImageNet16-120', 'sss'): 40} | ||||
|  | ||||
| y_max_s = {('cifar10', 'tss'): 94.5, | ||||
|            ('cifar10', 'sss'): 93.3, | ||||
|            ('cifar100', 'tss'): 72, | ||||
|            ('cifar100', 'sss'): 70, | ||||
|            ('ImageNet16-120', 'tss'): 44, | ||||
|            ('ImageNet16-120', 'sss'): 46} | ||||
|  | ||||
| name2label = {'cifar10': 'CIFAR-10', | ||||
|               'cifar100': 'CIFAR-100', | ||||
|               'ImageNet16-120': 'ImageNet-16-120'} | ||||
|  | ||||
| def visualize_curve(api, vis_save_dir, search_space, max_time): | ||||
|   vis_save_dir = vis_save_dir.resolve() | ||||
|   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|  | ||||
|   dpi, width, height = 250, 5200, 1400 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   LabelSize, LegendFontsize = 16, 16 | ||||
|  | ||||
|   def sub_plot_fn(ax, dataset): | ||||
|     alg2data = fetch_data(search_space=search_space, dataset=dataset) | ||||
|     alg2accuracies = OrderedDict() | ||||
|     total_tickets = 150 | ||||
|     time_tickets = [float(i) / total_tickets * max_time for i in range(total_tickets)] | ||||
|     colors = ['b', 'g', 'c', 'm', 'y'] | ||||
|     ax.set_xlim(0, 200) | ||||
|     ax.set_ylim(y_min_s[(dataset, search_space)], y_max_s[(dataset, search_space)]) | ||||
|     for idx, (alg, data) in enumerate(alg2data.items()): | ||||
|       print('plot alg : {:}'.format(alg)) | ||||
|       accuracies = [] | ||||
|       for ticket in time_tickets: | ||||
|         accuracy = query_performance(api, data, dataset, ticket) | ||||
|         accuracies.append(accuracy) | ||||
|       alg2accuracies[alg] = accuracies | ||||
|       ax.plot([x/100 for x in time_tickets], accuracies, c=colors[idx], label='{:}'.format(alg)) | ||||
|       ax.set_xlabel('Estimated wall-clock time (1e2 seconds)', fontsize=LabelSize) | ||||
|       ax.set_ylabel('Test accuracy on {:}'.format(name2label[dataset]), fontsize=LabelSize) | ||||
|       ax.set_title('Searching results on {:}'.format(name2label[dataset]), fontsize=LabelSize+4) | ||||
|     ax.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   fig, axs = plt.subplots(1, 3, figsize=figsize) | ||||
|   datasets = ['cifar10', 'cifar100', 'ImageNet16-120'] | ||||
|   for dataset, ax in zip(datasets, axs): | ||||
|     sub_plot_fn(ax, dataset) | ||||
|     print('sub-plot {:} on {:} done.'.format(dataset, search_space)) | ||||
|   save_path = (vis_save_dir / '{:}-curve.png'.format(search_space)).resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||
|   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|   plt.close('all') | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser(description='NATS-Bench', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--save_dir',     type=str,   default='output/vis-nas-bench/nas-algos', help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--search_space', type=str,   choices=['tss', 'sss'], help='Choose the search space.') | ||||
|   parser.add_argument('--max_time',     type=float, default=20000, help='The maximum time budget.') | ||||
|   args = parser.parse_args() | ||||
|  | ||||
|   save_dir = Path(args.save_dir) | ||||
|  | ||||
|   api = create(None, args.search_space, fast_mode=True, verbose=False) | ||||
|   visualize_curve(api, save_dir, args.search_space, args.max_time) | ||||
| @@ -1,5 +1,5 @@ | ||||
| #!/bin/bash | ||||
| # bash ./scripts-search/NASNet-space-search-by-GDAS-FRC.sh cifar10 1 -1 | ||||
| # bash ./scripts-search/NASNet-space-search-by-GDAS-FRC.sh cifar10 0 -1 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 3 ] ;then | ||||
|   | ||||
| @@ -4,6 +4,11 @@ | ||||
| ############################################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.01                          # | ||||
| ############################################################################## | ||||
| # [saturn1] CUDA_VISIBLE_DEVICES=0 bash scripts/NATS-Bench/train-topology.sh 00000-02000 200 "777 888 999" | ||||
| # [saturn1] CUDA_VISIBLE_DEVICES=0 bash scripts/NATS-Bench/train-topology.sh 02000-04000 200 "777 888 999" | ||||
| # [saturn1] CUDA_VISIBLE_DEVICES=1 bash scripts/NATS-Bench/train-topology.sh 04000-06000 200 "777 888 999" | ||||
| # [saturn1] CUDA_VISIBLE_DEVICES=1 bash scripts/NATS-Bench/train-topology.sh 06000-08000 200 "777 888 999" | ||||
| # | ||||
| # CUDA_VISIBLE_DEVICES=0 bash scripts/NATS-Bench/train-topology.sh 00000-05000 12 777 | ||||
| # bash ./scripts/NATS-Bench/train-topology.sh 05001-10000 12 777 | ||||
| # bash ./scripts/NATS-Bench/train-topology.sh 10001-14500 12 777 | ||||
|   | ||||
		Reference in New Issue
	
	Block a user