Add get_torch_home func for NATS-Bench
This commit is contained in:
		| @@ -385,7 +385,7 @@ def visualize_all_rank_info(api, vis_save_dir, indicator): | |||||||
|  |  | ||||||
|  |  | ||||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-X', formatter_class=argparse.ArgumentDefaultsHelpFormatter) |   parser = argparse.ArgumentParser(description='NATS-Bench', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||||
|   parser.add_argument('--save_dir',    type=str, default='output/vis-nas-bench', help='Folder to save checkpoints and log.') |   parser.add_argument('--save_dir',    type=str, default='output/vis-nas-bench', help='Folder to save checkpoints and log.') | ||||||
|   # use for train the model |   # use for train the model | ||||||
|   args = parser.parse_args() |   args = parser.parse_args() | ||||||
|   | |||||||
							
								
								
									
										175
									
								
								exps/NATS-Bench/draw-fig8.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										175
									
								
								exps/NATS-Bench/draw-fig8.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,175 @@ | |||||||
|  | ############################################################### | ||||||
|  | # NATS-Bench (https://arxiv.org/pdf/2009.00437.pdf)           # | ||||||
|  | # The code to draw Figure 6 in our paper.                     # | ||||||
|  | ############################################################### | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06           # | ||||||
|  | ############################################################### | ||||||
|  | # Usage: python exps/NATS-Bench/draw-fig8.py                  # | ||||||
|  | ############################################################### | ||||||
|  | import os, gc, sys, time, torch, argparse | ||||||
|  | import numpy as np | ||||||
|  | from typing import List, Text, Dict, Any | ||||||
|  | from shutil import copyfile | ||||||
|  | from collections import defaultdict, OrderedDict | ||||||
|  | from copy    import deepcopy | ||||||
|  | from pathlib import Path | ||||||
|  | import matplotlib | ||||||
|  | import seaborn as sns | ||||||
|  | matplotlib.use('agg') | ||||||
|  | import matplotlib.pyplot as plt | ||||||
|  | import matplotlib.ticker as ticker | ||||||
|  |  | ||||||
|  | lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||||
|  | if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||||
|  | from config_utils import dict2config, load_config | ||||||
|  | from nats_bench import create | ||||||
|  | from log_utils import time_string | ||||||
|  |  | ||||||
|  | plt.rcParams.update({ | ||||||
|  |     "text.usetex": True, | ||||||
|  |     "font.family": "sans-serif", | ||||||
|  |     "font.sans-serif": ["Helvetica"]}) | ||||||
|  | ## for Palatino and other serif fonts use: | ||||||
|  | plt.rcParams.update({ | ||||||
|  |     "text.usetex": True, | ||||||
|  |     "font.family": "serif", | ||||||
|  |     "font.serif": ["Palatino"], | ||||||
|  | }) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def fetch_data(root_dir='./output/search', search_space='tss', dataset=None): | ||||||
|  |   ss_dir = '{:}-{:}'.format(root_dir, search_space) | ||||||
|  |   alg2all = OrderedDict() | ||||||
|  |   # alg2name['REINFORCE'] = 'REINFORCE-0.01' | ||||||
|  |   # alg2name['RANDOM'] = 'RANDOM' | ||||||
|  |   # alg2name['BOHB'] = 'BOHB' | ||||||
|  |   if dataset == 'cifar10': | ||||||
|  |     suffixes = ['-T200000', '-T200000-FULL'] | ||||||
|  |   elif dataset == 'cifar100': | ||||||
|  |     suffixes = ['-T40000', '-T40000-FULL'] | ||||||
|  |   elif search_space == 'tss': | ||||||
|  |     suffixes = ['-T120000', '-T120000-FULL'] | ||||||
|  |   elif search_space == 'sss': | ||||||
|  |     suffixes = ['-T60000', '-T60000-FULL'] | ||||||
|  |   else: | ||||||
|  |     raise ValueError('Unkonwn dataset : {:}'.format(dataset)) | ||||||
|  |   if search_space == 'tss': | ||||||
|  |     hp = '$\mathcal{H}^{1}$' | ||||||
|  |   elif search_space == 'sss': | ||||||
|  |     hp = '$\mathcal{H}^{2}$' | ||||||
|  |   else: | ||||||
|  |     raise ValueError('Unkonwn search space: {:}'.format(search_space)) | ||||||
|  |  | ||||||
|  |   alg2all[r'REA ($\mathcal{H}^{0}$)'] = dict( | ||||||
|  |     path=os.path.join(ss_dir, dataset + suffixes[0], 'R-EA-SS3', 'results.pth'), | ||||||
|  |     color='b', linestyle='-') | ||||||
|  |   alg2all[r'REA ({:})'.format(hp)] = dict( | ||||||
|  |     path=os.path.join(ss_dir, dataset + suffixes[1], 'R-EA-SS3', 'results.pth'), | ||||||
|  |     color='b', linestyle='--') | ||||||
|  |  | ||||||
|  |   for alg, xdata in alg2all.items(): | ||||||
|  |     data = torch.load(xdata['path']) | ||||||
|  |     for index, info in data.items(): | ||||||
|  |       info['time_w_arch'] = [(x, y) for x, y in zip(info['all_total_times'], info['all_archs'])] | ||||||
|  |       for j, arch in enumerate(info['all_archs']): | ||||||
|  |         assert arch != -1, 'invalid arch from {:} {:} {:} ({:}, {:})'.format(alg, search_space, dataset, index, j) | ||||||
|  |     xdata['data'] = data | ||||||
|  |   return alg2all | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def query_performance(api, data, dataset, ticket): | ||||||
|  |   results, is_size_space = [], api.search_space_name == 'size' | ||||||
|  |   for i, info in data.items(): | ||||||
|  |     time_w_arch = sorted(info['time_w_arch'], key=lambda x: abs(x[0]-ticket)) | ||||||
|  |     time_a, arch_a = time_w_arch[0] | ||||||
|  |     time_b, arch_b = time_w_arch[1] | ||||||
|  |     info_a = api.get_more_info(arch_a, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||||
|  |     info_b = api.get_more_info(arch_b, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||||
|  |     accuracy_a, accuracy_b = info_a['test-accuracy'], info_b['test-accuracy'] | ||||||
|  |     interplate = (time_b-ticket) / (time_b-time_a) * accuracy_a + (ticket-time_a) / (time_b-time_a) * accuracy_b | ||||||
|  |     results.append(interplate) | ||||||
|  |   # return sum(results) / len(results) | ||||||
|  |   return np.mean(results), np.std(results) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | y_min_s = {('cifar10', 'tss'): 90, | ||||||
|  |            ('cifar10', 'sss'): 90, | ||||||
|  |            ('cifar100', 'tss'): 65, | ||||||
|  |            ('cifar100', 'sss'): 65, | ||||||
|  |            ('ImageNet16-120', 'tss'): 36, | ||||||
|  |            ('ImageNet16-120', 'sss'): 40} | ||||||
|  |  | ||||||
|  | y_max_s = {('cifar10', 'tss'): 94.5, | ||||||
|  |            ('cifar10', 'sss'): 94.5, | ||||||
|  |            ('cifar100', 'tss'): 72.5, | ||||||
|  |            ('cifar100', 'sss'): 70.5, | ||||||
|  |            ('ImageNet16-120', 'tss'): 46, | ||||||
|  |            ('ImageNet16-120', 'sss'): 46} | ||||||
|  |  | ||||||
|  | x_axis_s = {('cifar10', 'tss'): 200000, | ||||||
|  |             ('cifar10', 'sss'): 200000, | ||||||
|  |             ('cifar100', 'tss'): 400, | ||||||
|  |             ('cifar100', 'sss'): 400, | ||||||
|  |             ('ImageNet16-120', 'tss'): 1200, | ||||||
|  |             ('ImageNet16-120', 'sss'): 600} | ||||||
|  |  | ||||||
|  | name2label = {'cifar10': 'CIFAR-10', | ||||||
|  |               'cifar100': 'CIFAR-100', | ||||||
|  |               'ImageNet16-120': 'ImageNet-16-120'} | ||||||
|  |  | ||||||
|  | spaces2latex = {'tss': r'$\mathcal{S}_{t}$', | ||||||
|  |                 'sss': r'$\mathcal{S}_{s}$',} | ||||||
|  |  | ||||||
|  | def visualize_curve(api_dict, vis_save_dir): | ||||||
|  |   vis_save_dir = vis_save_dir.resolve() | ||||||
|  |   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||||
|  |  | ||||||
|  |   dpi, width, height = 250, 4000, 2400 | ||||||
|  |   figsize = width / float(dpi), height / float(dpi) | ||||||
|  |   LabelSize, LegendFontsize = 16, 16 | ||||||
|  |  | ||||||
|  |   def sub_plot_fn(ax, search_space, dataset): | ||||||
|  |     max_time = x_axis_s[(dataset, search_space)] | ||||||
|  |     alg2data = fetch_data(search_space=search_space, dataset=dataset) | ||||||
|  |     alg2accuracies = OrderedDict() | ||||||
|  |     total_tickets = 200 | ||||||
|  |     time_tickets = [float(i) / total_tickets * int(max_time) for i in range(total_tickets)] | ||||||
|  |     ax.set_xlim(0, x_axis_s[(dataset, search_space)]) | ||||||
|  |     ax.set_ylim(y_min_s[(dataset, search_space)], | ||||||
|  |                 y_max_s[(dataset, search_space)]) | ||||||
|  |     for idx, (alg, xdata) in enumerate(alg2data.items()): | ||||||
|  |       accuracies = [] | ||||||
|  |       for ticket in time_tickets: | ||||||
|  |         # import pdb; pdb.set_trace() | ||||||
|  |         accuracy, accuracy_std = query_performance( | ||||||
|  |           api_dict[search_space], xdata['data'], dataset, ticket) | ||||||
|  |         accuracies.append(accuracy) | ||||||
|  |       # print('{:} plot alg : {:10s}, final accuracy = {:.2f}$\pm${:.2f}'.format(time_string(), alg, accuracy, accuracy_std)) | ||||||
|  |       print('{:} plot alg : {:10s} on {:}'.format(time_string(), alg, search_space)) | ||||||
|  |       alg2accuracies[alg] = accuracies | ||||||
|  |       ax.plot(time_tickets, accuracies, c=xdata['color'], linestyle=xdata['linestyle'], label='{:}'.format(alg)) | ||||||
|  |       ax.set_xlabel('Estimated wall-clock time', fontsize=LabelSize) | ||||||
|  |       ax.set_ylabel('Test accuracy', fontsize=LabelSize) | ||||||
|  |       ax.set_title(r'Searching results on {:} for {:}'.format(name2label[dataset], spaces2latex[search_space]), | ||||||
|  |         fontsize=LabelSize+4) | ||||||
|  |     ax.legend(loc=4, fontsize=LegendFontsize) | ||||||
|  |  | ||||||
|  |   fig, axs = plt.subplots(1, 2, figsize=figsize) | ||||||
|  |   sub_plot_fn(axs[0], 'tss', 'cifar10') | ||||||
|  |   sub_plot_fn(axs[1], 'sss', 'cifar10') | ||||||
|  |   save_path = (vis_save_dir / 'full-curve.png').resolve() | ||||||
|  |   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||||
|  |   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||||
|  |   plt.close('all') | ||||||
|  |  | ||||||
|  |  | ||||||
|  | if __name__ == '__main__': | ||||||
|  |   parser = argparse.ArgumentParser(description='NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||||
|  |   parser.add_argument('--save_dir',     type=str,   default='output/vis-nas-bench/nas-algos-vs-h', help='Folder to save checkpoints and log.') | ||||||
|  |   args = parser.parse_args() | ||||||
|  |  | ||||||
|  |   save_dir = Path(args.save_dir) | ||||||
|  |  | ||||||
|  |   api_tss = create(None, 'tss', fast_mode=True, verbose=False) | ||||||
|  |   api_sss = create(None, 'sss', fast_mode=True, verbose=False) | ||||||
|  |   visualize_curve(dict(tss=api_tss, sss=api_sss), save_dir) | ||||||
							
								
								
									
										96
									
								
								exps/NATS-Bench/draw-ranks.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										96
									
								
								exps/NATS-Bench/draw-ranks.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,96 @@ | |||||||
|  | ############################################################### | ||||||
|  | # NATS-Bench (https://arxiv.org/pdf/2009.00437.pdf)           # | ||||||
|  | # The code to draw Figure 2 / 3 / 4 / 5 in our paper.         # | ||||||
|  | ############################################################### | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06           # | ||||||
|  | ############################################################### | ||||||
|  | # Usage: python exps/NATS-Bench/draw-ranks.py                 # | ||||||
|  | ############################################################### | ||||||
|  | import os, sys, time, torch, argparse | ||||||
|  | import scipy | ||||||
|  | import numpy as np | ||||||
|  | from typing import List, Text, Dict, Any | ||||||
|  | from shutil import copyfile | ||||||
|  | from collections import defaultdict | ||||||
|  | from copy    import deepcopy | ||||||
|  | from pathlib import Path | ||||||
|  | import matplotlib | ||||||
|  | import seaborn as sns | ||||||
|  | matplotlib.use('agg') | ||||||
|  | import matplotlib.pyplot as plt | ||||||
|  | import matplotlib.ticker as ticker | ||||||
|  |  | ||||||
|  | lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||||
|  | if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||||
|  | from config_utils import dict2config, load_config | ||||||
|  | from log_utils import time_string | ||||||
|  | from models import get_cell_based_tiny_net | ||||||
|  | from nats_bench import create | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def visualize_relative_info(api, vis_save_dir, indicator): | ||||||
|  |   vis_save_dir = vis_save_dir.resolve() | ||||||
|  |   # print ('{:} start to visualize {:} information'.format(time_string(), api)) | ||||||
|  |   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||||
|  |  | ||||||
|  |   cifar010_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('cifar10', indicator) | ||||||
|  |   cifar100_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('cifar100', indicator) | ||||||
|  |   imagenet_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('ImageNet16-120', indicator) | ||||||
|  |   cifar010_info = torch.load(cifar010_cache_path) | ||||||
|  |   cifar100_info = torch.load(cifar100_cache_path) | ||||||
|  |   imagenet_info = torch.load(imagenet_cache_path) | ||||||
|  |   indexes       = list(range(len(cifar010_info['params']))) | ||||||
|  |  | ||||||
|  |   print ('{:} start to visualize relative ranking'.format(time_string())) | ||||||
|  |  | ||||||
|  |   cifar010_ord_indexes = sorted(indexes, key=lambda i: cifar010_info['test_accs'][i]) | ||||||
|  |   cifar100_ord_indexes = sorted(indexes, key=lambda i: cifar100_info['test_accs'][i]) | ||||||
|  |   imagenet_ord_indexes = sorted(indexes, key=lambda i: imagenet_info['test_accs'][i]) | ||||||
|  |  | ||||||
|  |   cifar100_labels, imagenet_labels = [], [] | ||||||
|  |   for idx in cifar010_ord_indexes: | ||||||
|  |     cifar100_labels.append( cifar100_ord_indexes.index(idx) ) | ||||||
|  |     imagenet_labels.append( imagenet_ord_indexes.index(idx) ) | ||||||
|  |   print ('{:} prepare data done.'.format(time_string())) | ||||||
|  |  | ||||||
|  |   dpi, width, height = 200, 1400,  800 | ||||||
|  |   figsize = width / float(dpi), height / float(dpi) | ||||||
|  |   LabelSize, LegendFontsize = 18, 12 | ||||||
|  |   resnet_scale, resnet_alpha = 120, 0.5 | ||||||
|  |  | ||||||
|  |   fig = plt.figure(figsize=figsize) | ||||||
|  |   ax  = fig.add_subplot(111) | ||||||
|  |   plt.xlim(min(indexes), max(indexes)) | ||||||
|  |   plt.ylim(min(indexes), max(indexes)) | ||||||
|  |   # plt.ylabel('y').set_rotation(30) | ||||||
|  |   plt.yticks(np.arange(min(indexes), max(indexes), max(indexes)//3), fontsize=LegendFontsize, rotation='vertical') | ||||||
|  |   plt.xticks(np.arange(min(indexes), max(indexes), max(indexes)//5), fontsize=LegendFontsize) | ||||||
|  |   ax.scatter(indexes, cifar100_labels, marker='^', s=0.5, c='tab:green', alpha=0.8) | ||||||
|  |   ax.scatter(indexes, imagenet_labels, marker='*', s=0.5, c='tab:red'  , alpha=0.8) | ||||||
|  |   ax.scatter(indexes, indexes        , marker='o', s=0.5, c='tab:blue' , alpha=0.8) | ||||||
|  |   ax.scatter([-1], [-1], marker='o', s=100, c='tab:blue' , label='CIFAR-10') | ||||||
|  |   ax.scatter([-1], [-1], marker='^', s=100, c='tab:green', label='CIFAR-100') | ||||||
|  |   ax.scatter([-1], [-1], marker='*', s=100, c='tab:red'  , label='ImageNet-16-120') | ||||||
|  |   plt.grid(zorder=0) | ||||||
|  |   ax.set_axisbelow(True) | ||||||
|  |   plt.legend(loc=0, fontsize=LegendFontsize) | ||||||
|  |   ax.set_xlabel('architecture ranking in CIFAR-10', fontsize=LabelSize) | ||||||
|  |   ax.set_ylabel('architecture ranking', fontsize=LabelSize) | ||||||
|  |   save_path = (vis_save_dir / '{:}-relative-rank.pdf'.format(indicator)).resolve() | ||||||
|  |   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf') | ||||||
|  |   save_path = (vis_save_dir / '{:}-relative-rank.png'.format(indicator)).resolve() | ||||||
|  |   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||||
|  |   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | if __name__ == '__main__': | ||||||
|  |   parser = argparse.ArgumentParser(description='NATS-Bench', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||||
|  |   parser.add_argument('--save_dir',    type=str, default='output/vis-nas-bench/rank-stability', help='Folder to save checkpoints and log.') | ||||||
|  |   # use for train the model | ||||||
|  |   args = parser.parse_args() | ||||||
|  |  | ||||||
|  |   to_save_dir = Path(args.save_dir) | ||||||
|  |  | ||||||
|  |   # Figure 2 | ||||||
|  |   visualize_relative_info(None, to_save_dir, 'tss') | ||||||
|  |   visualize_relative_info(None, to_save_dir, 'sss') | ||||||
| @@ -9,6 +9,7 @@ | |||||||
| # python ./exps/NATS-algos/regularized_ea.py --dataset cifar10 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | # python ./exps/NATS-algos/regularized_ea.py --dataset cifar10 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||||
| # python ./exps/NATS-algos/regularized_ea.py --dataset cifar100 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | # python ./exps/NATS-algos/regularized_ea.py --dataset cifar100 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||||
| # python ./exps/NATS-algos/regularized_ea.py --dataset ImageNet16-120 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | # python ./exps/NATS-algos/regularized_ea.py --dataset ImageNet16-120 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||||
|  | # python ./exps/NATS-algos/regularized_ea.py  --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --use_proxy 0 | ||||||
| ################################################################## | ################################################################## | ||||||
| import os, sys, time, glob, random, argparse | import os, sys, time, glob, random, argparse | ||||||
| import numpy as np, collections | import numpy as np, collections | ||||||
| @@ -119,10 +120,8 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran | |||||||
|   while len(population) < population_size: |   while len(population) < population_size: | ||||||
|     model = Model() |     model = Model() | ||||||
|     model.arch = random_arch() |     model.arch = random_arch() | ||||||
|     if use_proxy: |     model.accuracy, _, _, total_cost = api.simulate_train_eval( | ||||||
|       model.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, hp='12') |       model.arch, dataset, hp='12' if use_proxy else api.full_train_epochs) | ||||||
|     else: |  | ||||||
|       model.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, hp=api.full_train_epochs) |  | ||||||
|     # Append the info |     # Append the info | ||||||
|     population.append(model) |     population.append(model) | ||||||
|     history.append((model.accuracy, model.arch)) |     history.append((model.accuracy, model.arch)) | ||||||
| @@ -146,7 +145,8 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran | |||||||
|     # Create the child model and store it. |     # Create the child model and store it. | ||||||
|     child = Model() |     child = Model() | ||||||
|     child.arch = mutate_arch(parent.arch) |     child.arch = mutate_arch(parent.arch) | ||||||
|     child.accuracy, _, _, total_cost = api.simulate_train_eval(child.arch, dataset, hp='12') |     child.accuracy, _, _, total_cost = api.simulate_train_eval( | ||||||
|  |       child.arch, dataset, hp='12' if use_proxy else api.full_train_epochs) | ||||||
|     # Append the info |     # Append the info | ||||||
|     population.append(child) |     population.append(child) | ||||||
|     history.append((child.accuracy, child.arch)) |     history.append((child.accuracy, child.arch)) | ||||||
|   | |||||||
| @@ -17,6 +17,7 @@ from typing import Dict, Optional, Text, Union, Any | |||||||
|  |  | ||||||
| from nats_bench.api_utils import ArchResults | from nats_bench.api_utils import ArchResults | ||||||
| from nats_bench.api_utils import NASBenchMetaAPI | from nats_bench.api_utils import NASBenchMetaAPI | ||||||
|  | from nats_bench.api_utils import get_torch_home | ||||||
| from nats_bench.api_utils import nats_is_dir | from nats_bench.api_utils import nats_is_dir | ||||||
| from nats_bench.api_utils import nats_is_file | from nats_bench.api_utils import nats_is_file | ||||||
| from nats_bench.api_utils import PICKLE_EXT | from nats_bench.api_utils import PICKLE_EXT | ||||||
| @@ -88,10 +89,10 @@ class NATSsize(NASBenchMetaAPI): | |||||||
|     if file_path_or_dict is None: |     if file_path_or_dict is None: | ||||||
|       if self._fast_mode: |       if self._fast_mode: | ||||||
|         self._archive_dir = os.path.join( |         self._archive_dir = os.path.join( | ||||||
|             os.environ['TORCH_HOME'], '{:}-simple'.format(ALL_BASE_NAMES[-1])) |             get_torch_home(), '{:}-simple'.format(ALL_BASE_NAMES[-1])) | ||||||
|       else: |       else: | ||||||
|         file_path_or_dict = os.path.join( |         file_path_or_dict = os.path.join( | ||||||
|             os.environ['TORCH_HOME'], '{:}.{:}'.format( |             get_torch_home(), '{:}.{:}'.format( | ||||||
|                 ALL_BASE_NAMES[-1], PICKLE_EXT)) |                 ALL_BASE_NAMES[-1], PICKLE_EXT)) | ||||||
|       print('{:} Try to use the default NATS-Bench (size) path from ' |       print('{:} Try to use the default NATS-Bench (size) path from ' | ||||||
|             'fast_mode={:} and path={:}.'.format(time_string(), self._fast_mode, |             'fast_mode={:} and path={:}.'.format(time_string(), self._fast_mode, | ||||||
|   | |||||||
| @@ -17,6 +17,7 @@ from typing import Any, Dict, List, Optional, Text, Union | |||||||
|  |  | ||||||
| from nats_bench.api_utils import ArchResults | from nats_bench.api_utils import ArchResults | ||||||
| from nats_bench.api_utils import NASBenchMetaAPI | from nats_bench.api_utils import NASBenchMetaAPI | ||||||
|  | from nats_bench.api_utils import get_torch_home | ||||||
| from nats_bench.api_utils import nats_is_dir | from nats_bench.api_utils import nats_is_dir | ||||||
| from nats_bench.api_utils import nats_is_file | from nats_bench.api_utils import nats_is_file | ||||||
| from nats_bench.api_utils import PICKLE_EXT | from nats_bench.api_utils import PICKLE_EXT | ||||||
| @@ -88,10 +89,10 @@ class NATStopology(NASBenchMetaAPI): | |||||||
|     if file_path_or_dict is None: |     if file_path_or_dict is None: | ||||||
|       if self._fast_mode: |       if self._fast_mode: | ||||||
|         self._archive_dir = os.path.join( |         self._archive_dir = os.path.join( | ||||||
|             os.environ['TORCH_HOME'], '{:}-simple'.format(ALL_BASE_NAMES[-1])) |             get_torch_home(), '{:}-simple'.format(ALL_BASE_NAMES[-1])) | ||||||
|       else: |       else: | ||||||
|         file_path_or_dict = os.path.join( |         file_path_or_dict = os.path.join( | ||||||
|             os.environ['TORCH_HOME'], '{:}.{:}'.format( |             get_torch_home(), '{:}.{:}'.format( | ||||||
|                 ALL_BASE_NAMES[-1], PICKLE_EXT)) |                 ALL_BASE_NAMES[-1], PICKLE_EXT)) | ||||||
|       print('{:} Try to use the default NATS-Bench (topology) path from ' |       print('{:} Try to use the default NATS-Bench (topology) path from ' | ||||||
|             'fast_mode={:} and path={:}.'.format(time_string(), self._fast_mode, file_path_or_dict)) |             'fast_mode={:} and path={:}.'.format(time_string(), self._fast_mode, file_path_or_dict)) | ||||||
|   | |||||||
| @@ -45,6 +45,17 @@ def get_file_system(): | |||||||
|   return _FILE_SYSTEM |   return _FILE_SYSTEM | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def get_torch_home(): | ||||||
|  |   if 'TORCH_HOME' in os.environ: | ||||||
|  |     return os.environ['TORCH_HOME'] | ||||||
|  |   elif 'HOME' in os.environ: | ||||||
|  |     return os.path.join(os.environ['HOME'], '.torch') | ||||||
|  |   else: | ||||||
|  |     raise ValueError('Did not find HOME in os.environ. ' | ||||||
|  |       'Please at least setup the path of HOME or TORCH_HOME ' | ||||||
|  |       'in the environment.') | ||||||
|  |  | ||||||
|  |  | ||||||
| def nats_is_dir(file_path): | def nats_is_dir(file_path): | ||||||
|   if _FILE_SYSTEM == 'default': |   if _FILE_SYSTEM == 'default': | ||||||
|     return os.path.isdir(file_path) |     return os.path.isdir(file_path) | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user