Add get_torch_home func for NATS-Bench
This commit is contained in:
		| @@ -385,7 +385,7 @@ def visualize_all_rank_info(api, vis_save_dir, indicator): | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-X', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser = argparse.ArgumentParser(description='NATS-Bench', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--save_dir',    type=str, default='output/vis-nas-bench', help='Folder to save checkpoints and log.') | ||||
|   # use for train the model | ||||
|   args = parser.parse_args() | ||||
|   | ||||
							
								
								
									
										175
									
								
								exps/NATS-Bench/draw-fig8.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										175
									
								
								exps/NATS-Bench/draw-fig8.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,175 @@ | ||||
| ############################################################### | ||||
| # NATS-Bench (https://arxiv.org/pdf/2009.00437.pdf)           # | ||||
| # The code to draw Figure 6 in our paper.                     # | ||||
| ############################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06           # | ||||
| ############################################################### | ||||
| # Usage: python exps/NATS-Bench/draw-fig8.py                  # | ||||
| ############################################################### | ||||
| import os, gc, sys, time, torch, argparse | ||||
| import numpy as np | ||||
| from typing import List, Text, Dict, Any | ||||
| from shutil import copyfile | ||||
| from collections import defaultdict, OrderedDict | ||||
| from copy    import deepcopy | ||||
| from pathlib import Path | ||||
| import matplotlib | ||||
| import seaborn as sns | ||||
| matplotlib.use('agg') | ||||
| import matplotlib.pyplot as plt | ||||
| import matplotlib.ticker as ticker | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import dict2config, load_config | ||||
| from nats_bench import create | ||||
| from log_utils import time_string | ||||
|  | ||||
| plt.rcParams.update({ | ||||
|     "text.usetex": True, | ||||
|     "font.family": "sans-serif", | ||||
|     "font.sans-serif": ["Helvetica"]}) | ||||
| ## for Palatino and other serif fonts use: | ||||
| plt.rcParams.update({ | ||||
|     "text.usetex": True, | ||||
|     "font.family": "serif", | ||||
|     "font.serif": ["Palatino"], | ||||
| }) | ||||
|  | ||||
|  | ||||
| def fetch_data(root_dir='./output/search', search_space='tss', dataset=None): | ||||
|   ss_dir = '{:}-{:}'.format(root_dir, search_space) | ||||
|   alg2all = OrderedDict() | ||||
|   # alg2name['REINFORCE'] = 'REINFORCE-0.01' | ||||
|   # alg2name['RANDOM'] = 'RANDOM' | ||||
|   # alg2name['BOHB'] = 'BOHB' | ||||
|   if dataset == 'cifar10': | ||||
|     suffixes = ['-T200000', '-T200000-FULL'] | ||||
|   elif dataset == 'cifar100': | ||||
|     suffixes = ['-T40000', '-T40000-FULL'] | ||||
|   elif search_space == 'tss': | ||||
|     suffixes = ['-T120000', '-T120000-FULL'] | ||||
|   elif search_space == 'sss': | ||||
|     suffixes = ['-T60000', '-T60000-FULL'] | ||||
|   else: | ||||
|     raise ValueError('Unkonwn dataset : {:}'.format(dataset)) | ||||
|   if search_space == 'tss': | ||||
|     hp = '$\mathcal{H}^{1}$' | ||||
|   elif search_space == 'sss': | ||||
|     hp = '$\mathcal{H}^{2}$' | ||||
|   else: | ||||
|     raise ValueError('Unkonwn search space: {:}'.format(search_space)) | ||||
|  | ||||
|   alg2all[r'REA ($\mathcal{H}^{0}$)'] = dict( | ||||
|     path=os.path.join(ss_dir, dataset + suffixes[0], 'R-EA-SS3', 'results.pth'), | ||||
|     color='b', linestyle='-') | ||||
|   alg2all[r'REA ({:})'.format(hp)] = dict( | ||||
|     path=os.path.join(ss_dir, dataset + suffixes[1], 'R-EA-SS3', 'results.pth'), | ||||
|     color='b', linestyle='--') | ||||
|  | ||||
|   for alg, xdata in alg2all.items(): | ||||
|     data = torch.load(xdata['path']) | ||||
|     for index, info in data.items(): | ||||
|       info['time_w_arch'] = [(x, y) for x, y in zip(info['all_total_times'], info['all_archs'])] | ||||
|       for j, arch in enumerate(info['all_archs']): | ||||
|         assert arch != -1, 'invalid arch from {:} {:} {:} ({:}, {:})'.format(alg, search_space, dataset, index, j) | ||||
|     xdata['data'] = data | ||||
|   return alg2all | ||||
|  | ||||
|  | ||||
| def query_performance(api, data, dataset, ticket): | ||||
|   results, is_size_space = [], api.search_space_name == 'size' | ||||
|   for i, info in data.items(): | ||||
|     time_w_arch = sorted(info['time_w_arch'], key=lambda x: abs(x[0]-ticket)) | ||||
|     time_a, arch_a = time_w_arch[0] | ||||
|     time_b, arch_b = time_w_arch[1] | ||||
|     info_a = api.get_more_info(arch_a, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|     info_b = api.get_more_info(arch_b, dataset=dataset, hp=90 if is_size_space else 200, is_random=False) | ||||
|     accuracy_a, accuracy_b = info_a['test-accuracy'], info_b['test-accuracy'] | ||||
|     interplate = (time_b-ticket) / (time_b-time_a) * accuracy_a + (ticket-time_a) / (time_b-time_a) * accuracy_b | ||||
|     results.append(interplate) | ||||
|   # return sum(results) / len(results) | ||||
|   return np.mean(results), np.std(results) | ||||
|  | ||||
|  | ||||
| y_min_s = {('cifar10', 'tss'): 90, | ||||
|            ('cifar10', 'sss'): 90, | ||||
|            ('cifar100', 'tss'): 65, | ||||
|            ('cifar100', 'sss'): 65, | ||||
|            ('ImageNet16-120', 'tss'): 36, | ||||
|            ('ImageNet16-120', 'sss'): 40} | ||||
|  | ||||
| y_max_s = {('cifar10', 'tss'): 94.5, | ||||
|            ('cifar10', 'sss'): 94.5, | ||||
|            ('cifar100', 'tss'): 72.5, | ||||
|            ('cifar100', 'sss'): 70.5, | ||||
|            ('ImageNet16-120', 'tss'): 46, | ||||
|            ('ImageNet16-120', 'sss'): 46} | ||||
|  | ||||
| x_axis_s = {('cifar10', 'tss'): 200000, | ||||
|             ('cifar10', 'sss'): 200000, | ||||
|             ('cifar100', 'tss'): 400, | ||||
|             ('cifar100', 'sss'): 400, | ||||
|             ('ImageNet16-120', 'tss'): 1200, | ||||
|             ('ImageNet16-120', 'sss'): 600} | ||||
|  | ||||
| name2label = {'cifar10': 'CIFAR-10', | ||||
|               'cifar100': 'CIFAR-100', | ||||
|               'ImageNet16-120': 'ImageNet-16-120'} | ||||
|  | ||||
| spaces2latex = {'tss': r'$\mathcal{S}_{t}$', | ||||
|                 'sss': r'$\mathcal{S}_{s}$',} | ||||
|  | ||||
| def visualize_curve(api_dict, vis_save_dir): | ||||
|   vis_save_dir = vis_save_dir.resolve() | ||||
|   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|  | ||||
|   dpi, width, height = 250, 4000, 2400 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   LabelSize, LegendFontsize = 16, 16 | ||||
|  | ||||
|   def sub_plot_fn(ax, search_space, dataset): | ||||
|     max_time = x_axis_s[(dataset, search_space)] | ||||
|     alg2data = fetch_data(search_space=search_space, dataset=dataset) | ||||
|     alg2accuracies = OrderedDict() | ||||
|     total_tickets = 200 | ||||
|     time_tickets = [float(i) / total_tickets * int(max_time) for i in range(total_tickets)] | ||||
|     ax.set_xlim(0, x_axis_s[(dataset, search_space)]) | ||||
|     ax.set_ylim(y_min_s[(dataset, search_space)], | ||||
|                 y_max_s[(dataset, search_space)]) | ||||
|     for idx, (alg, xdata) in enumerate(alg2data.items()): | ||||
|       accuracies = [] | ||||
|       for ticket in time_tickets: | ||||
|         # import pdb; pdb.set_trace() | ||||
|         accuracy, accuracy_std = query_performance( | ||||
|           api_dict[search_space], xdata['data'], dataset, ticket) | ||||
|         accuracies.append(accuracy) | ||||
|       # print('{:} plot alg : {:10s}, final accuracy = {:.2f}$\pm${:.2f}'.format(time_string(), alg, accuracy, accuracy_std)) | ||||
|       print('{:} plot alg : {:10s} on {:}'.format(time_string(), alg, search_space)) | ||||
|       alg2accuracies[alg] = accuracies | ||||
|       ax.plot(time_tickets, accuracies, c=xdata['color'], linestyle=xdata['linestyle'], label='{:}'.format(alg)) | ||||
|       ax.set_xlabel('Estimated wall-clock time', fontsize=LabelSize) | ||||
|       ax.set_ylabel('Test accuracy', fontsize=LabelSize) | ||||
|       ax.set_title(r'Searching results on {:} for {:}'.format(name2label[dataset], spaces2latex[search_space]), | ||||
|         fontsize=LabelSize+4) | ||||
|     ax.legend(loc=4, fontsize=LegendFontsize) | ||||
|  | ||||
|   fig, axs = plt.subplots(1, 2, figsize=figsize) | ||||
|   sub_plot_fn(axs[0], 'tss', 'cifar10') | ||||
|   sub_plot_fn(axs[1], 'sss', 'cifar10') | ||||
|   save_path = (vis_save_dir / 'full-curve.png').resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||
|   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|   plt.close('all') | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser(description='NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--save_dir',     type=str,   default='output/vis-nas-bench/nas-algos-vs-h', help='Folder to save checkpoints and log.') | ||||
|   args = parser.parse_args() | ||||
|  | ||||
|   save_dir = Path(args.save_dir) | ||||
|  | ||||
|   api_tss = create(None, 'tss', fast_mode=True, verbose=False) | ||||
|   api_sss = create(None, 'sss', fast_mode=True, verbose=False) | ||||
|   visualize_curve(dict(tss=api_tss, sss=api_sss), save_dir) | ||||
							
								
								
									
										96
									
								
								exps/NATS-Bench/draw-ranks.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										96
									
								
								exps/NATS-Bench/draw-ranks.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,96 @@ | ||||
| ############################################################### | ||||
| # NATS-Bench (https://arxiv.org/pdf/2009.00437.pdf)           # | ||||
| # The code to draw Figure 2 / 3 / 4 / 5 in our paper.         # | ||||
| ############################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06           # | ||||
| ############################################################### | ||||
| # Usage: python exps/NATS-Bench/draw-ranks.py                 # | ||||
| ############################################################### | ||||
| import os, sys, time, torch, argparse | ||||
| import scipy | ||||
| import numpy as np | ||||
| from typing import List, Text, Dict, Any | ||||
| from shutil import copyfile | ||||
| from collections import defaultdict | ||||
| from copy    import deepcopy | ||||
| from pathlib import Path | ||||
| import matplotlib | ||||
| import seaborn as sns | ||||
| matplotlib.use('agg') | ||||
| import matplotlib.pyplot as plt | ||||
| import matplotlib.ticker as ticker | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import dict2config, load_config | ||||
| from log_utils import time_string | ||||
| from models import get_cell_based_tiny_net | ||||
| from nats_bench import create | ||||
|  | ||||
|  | ||||
| def visualize_relative_info(api, vis_save_dir, indicator): | ||||
|   vis_save_dir = vis_save_dir.resolve() | ||||
|   # print ('{:} start to visualize {:} information'.format(time_string(), api)) | ||||
|   vis_save_dir.mkdir(parents=True, exist_ok=True) | ||||
|  | ||||
|   cifar010_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('cifar10', indicator) | ||||
|   cifar100_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('cifar100', indicator) | ||||
|   imagenet_cache_path = vis_save_dir / '{:}-cache-{:}-info.pth'.format('ImageNet16-120', indicator) | ||||
|   cifar010_info = torch.load(cifar010_cache_path) | ||||
|   cifar100_info = torch.load(cifar100_cache_path) | ||||
|   imagenet_info = torch.load(imagenet_cache_path) | ||||
|   indexes       = list(range(len(cifar010_info['params']))) | ||||
|  | ||||
|   print ('{:} start to visualize relative ranking'.format(time_string())) | ||||
|  | ||||
|   cifar010_ord_indexes = sorted(indexes, key=lambda i: cifar010_info['test_accs'][i]) | ||||
|   cifar100_ord_indexes = sorted(indexes, key=lambda i: cifar100_info['test_accs'][i]) | ||||
|   imagenet_ord_indexes = sorted(indexes, key=lambda i: imagenet_info['test_accs'][i]) | ||||
|  | ||||
|   cifar100_labels, imagenet_labels = [], [] | ||||
|   for idx in cifar010_ord_indexes: | ||||
|     cifar100_labels.append( cifar100_ord_indexes.index(idx) ) | ||||
|     imagenet_labels.append( imagenet_ord_indexes.index(idx) ) | ||||
|   print ('{:} prepare data done.'.format(time_string())) | ||||
|  | ||||
|   dpi, width, height = 200, 1400,  800 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   LabelSize, LegendFontsize = 18, 12 | ||||
|   resnet_scale, resnet_alpha = 120, 0.5 | ||||
|  | ||||
|   fig = plt.figure(figsize=figsize) | ||||
|   ax  = fig.add_subplot(111) | ||||
|   plt.xlim(min(indexes), max(indexes)) | ||||
|   plt.ylim(min(indexes), max(indexes)) | ||||
|   # plt.ylabel('y').set_rotation(30) | ||||
|   plt.yticks(np.arange(min(indexes), max(indexes), max(indexes)//3), fontsize=LegendFontsize, rotation='vertical') | ||||
|   plt.xticks(np.arange(min(indexes), max(indexes), max(indexes)//5), fontsize=LegendFontsize) | ||||
|   ax.scatter(indexes, cifar100_labels, marker='^', s=0.5, c='tab:green', alpha=0.8) | ||||
|   ax.scatter(indexes, imagenet_labels, marker='*', s=0.5, c='tab:red'  , alpha=0.8) | ||||
|   ax.scatter(indexes, indexes        , marker='o', s=0.5, c='tab:blue' , alpha=0.8) | ||||
|   ax.scatter([-1], [-1], marker='o', s=100, c='tab:blue' , label='CIFAR-10') | ||||
|   ax.scatter([-1], [-1], marker='^', s=100, c='tab:green', label='CIFAR-100') | ||||
|   ax.scatter([-1], [-1], marker='*', s=100, c='tab:red'  , label='ImageNet-16-120') | ||||
|   plt.grid(zorder=0) | ||||
|   ax.set_axisbelow(True) | ||||
|   plt.legend(loc=0, fontsize=LegendFontsize) | ||||
|   ax.set_xlabel('architecture ranking in CIFAR-10', fontsize=LabelSize) | ||||
|   ax.set_ylabel('architecture ranking', fontsize=LabelSize) | ||||
|   save_path = (vis_save_dir / '{:}-relative-rank.pdf'.format(indicator)).resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf') | ||||
|   save_path = (vis_save_dir / '{:}-relative-rank.png'.format(indicator)).resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||
|   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser(description='NATS-Bench', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--save_dir',    type=str, default='output/vis-nas-bench/rank-stability', help='Folder to save checkpoints and log.') | ||||
|   # use for train the model | ||||
|   args = parser.parse_args() | ||||
|  | ||||
|   to_save_dir = Path(args.save_dir) | ||||
|  | ||||
|   # Figure 2 | ||||
|   visualize_relative_info(None, to_save_dir, 'tss') | ||||
|   visualize_relative_info(None, to_save_dir, 'sss') | ||||
| @@ -9,6 +9,7 @@ | ||||
| # python ./exps/NATS-algos/regularized_ea.py --dataset cifar10 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||
| # python ./exps/NATS-algos/regularized_ea.py --dataset cifar100 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||
| # python ./exps/NATS-algos/regularized_ea.py --dataset ImageNet16-120 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||
| # python ./exps/NATS-algos/regularized_ea.py  --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --use_proxy 0 | ||||
| ################################################################## | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np, collections | ||||
| @@ -119,10 +120,8 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran | ||||
|   while len(population) < population_size: | ||||
|     model = Model() | ||||
|     model.arch = random_arch() | ||||
|     if use_proxy: | ||||
|       model.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, hp='12') | ||||
|     else: | ||||
|       model.accuracy, _, _, total_cost = api.simulate_train_eval(model.arch, dataset, hp=api.full_train_epochs) | ||||
|     model.accuracy, _, _, total_cost = api.simulate_train_eval( | ||||
|       model.arch, dataset, hp='12' if use_proxy else api.full_train_epochs) | ||||
|     # Append the info | ||||
|     population.append(model) | ||||
|     history.append((model.accuracy, model.arch)) | ||||
| @@ -146,7 +145,8 @@ def regularized_evolution(cycles, population_size, sample_size, time_budget, ran | ||||
|     # Create the child model and store it. | ||||
|     child = Model() | ||||
|     child.arch = mutate_arch(parent.arch) | ||||
|     child.accuracy, _, _, total_cost = api.simulate_train_eval(child.arch, dataset, hp='12') | ||||
|     child.accuracy, _, _, total_cost = api.simulate_train_eval( | ||||
|       child.arch, dataset, hp='12' if use_proxy else api.full_train_epochs) | ||||
|     # Append the info | ||||
|     population.append(child) | ||||
|     history.append((child.accuracy, child.arch)) | ||||
|   | ||||
| @@ -17,6 +17,7 @@ from typing import Dict, Optional, Text, Union, Any | ||||
|  | ||||
| from nats_bench.api_utils import ArchResults | ||||
| from nats_bench.api_utils import NASBenchMetaAPI | ||||
| from nats_bench.api_utils import get_torch_home | ||||
| from nats_bench.api_utils import nats_is_dir | ||||
| from nats_bench.api_utils import nats_is_file | ||||
| from nats_bench.api_utils import PICKLE_EXT | ||||
| @@ -88,10 +89,10 @@ class NATSsize(NASBenchMetaAPI): | ||||
|     if file_path_or_dict is None: | ||||
|       if self._fast_mode: | ||||
|         self._archive_dir = os.path.join( | ||||
|             os.environ['TORCH_HOME'], '{:}-simple'.format(ALL_BASE_NAMES[-1])) | ||||
|             get_torch_home(), '{:}-simple'.format(ALL_BASE_NAMES[-1])) | ||||
|       else: | ||||
|         file_path_or_dict = os.path.join( | ||||
|             os.environ['TORCH_HOME'], '{:}.{:}'.format( | ||||
|             get_torch_home(), '{:}.{:}'.format( | ||||
|                 ALL_BASE_NAMES[-1], PICKLE_EXT)) | ||||
|       print('{:} Try to use the default NATS-Bench (size) path from ' | ||||
|             'fast_mode={:} and path={:}.'.format(time_string(), self._fast_mode, | ||||
|   | ||||
| @@ -17,6 +17,7 @@ from typing import Any, Dict, List, Optional, Text, Union | ||||
|  | ||||
| from nats_bench.api_utils import ArchResults | ||||
| from nats_bench.api_utils import NASBenchMetaAPI | ||||
| from nats_bench.api_utils import get_torch_home | ||||
| from nats_bench.api_utils import nats_is_dir | ||||
| from nats_bench.api_utils import nats_is_file | ||||
| from nats_bench.api_utils import PICKLE_EXT | ||||
| @@ -88,10 +89,10 @@ class NATStopology(NASBenchMetaAPI): | ||||
|     if file_path_or_dict is None: | ||||
|       if self._fast_mode: | ||||
|         self._archive_dir = os.path.join( | ||||
|             os.environ['TORCH_HOME'], '{:}-simple'.format(ALL_BASE_NAMES[-1])) | ||||
|             get_torch_home(), '{:}-simple'.format(ALL_BASE_NAMES[-1])) | ||||
|       else: | ||||
|         file_path_or_dict = os.path.join( | ||||
|             os.environ['TORCH_HOME'], '{:}.{:}'.format( | ||||
|             get_torch_home(), '{:}.{:}'.format( | ||||
|                 ALL_BASE_NAMES[-1], PICKLE_EXT)) | ||||
|       print('{:} Try to use the default NATS-Bench (topology) path from ' | ||||
|             'fast_mode={:} and path={:}.'.format(time_string(), self._fast_mode, file_path_or_dict)) | ||||
|   | ||||
| @@ -45,6 +45,17 @@ def get_file_system(): | ||||
|   return _FILE_SYSTEM | ||||
|  | ||||
|  | ||||
| def get_torch_home(): | ||||
|   if 'TORCH_HOME' in os.environ: | ||||
|     return os.environ['TORCH_HOME'] | ||||
|   elif 'HOME' in os.environ: | ||||
|     return os.path.join(os.environ['HOME'], '.torch') | ||||
|   else: | ||||
|     raise ValueError('Did not find HOME in os.environ. ' | ||||
|       'Please at least setup the path of HOME or TORCH_HOME ' | ||||
|       'in the environment.') | ||||
|  | ||||
|  | ||||
| def nats_is_dir(file_path): | ||||
|   if _FILE_SYSTEM == 'default': | ||||
|     return os.path.isdir(file_path) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user