Re-organize GeMOSA
This commit is contained in:
		| @@ -33,7 +33,6 @@ from xautodl.datasets.synthetic_core import get_synthetic_env | ||||
| from xautodl.models.xcore import get_model | ||||
| from xautodl.xlayers import super_core, trunc_normal_ | ||||
|  | ||||
| from lfna_utils import lfna_setup, train_model, TimeData | ||||
| from meta_model import MetaModelV1 | ||||
|  | ||||
|  | ||||
| @@ -182,7 +181,8 @@ def meta_train_procedure(base_model, meta_model, criterion, xenv, args, logger): | ||||
|  | ||||
|  | ||||
| def main(args): | ||||
|     logger, model_kwargs = lfna_setup(args) | ||||
|     prepare_seed(args.rand_seed) | ||||
|     logger = prepare_logger(args) | ||||
|     train_env = get_synthetic_env(mode="train", version=args.env_version) | ||||
|     valid_env = get_synthetic_env(mode="valid", version=args.env_version) | ||||
|     trainval_env = get_synthetic_env(mode="trainval", version=args.env_version) | ||||
| @@ -191,6 +191,14 @@ def main(args): | ||||
|     logger.log("The validation enviornment: {:}".format(valid_env)) | ||||
|     logger.log("The trainval enviornment: {:}".format(trainval_env)) | ||||
|     logger.log("The total enviornment: {:}".format(all_env)) | ||||
|     model_kwargs = dict( | ||||
|         config=dict(model_type="norm_mlp"), | ||||
|         input_dim=all_env.meta_info["input_dim"], | ||||
|         output_dim=all_env.meta_info["output_dim"], | ||||
|         hidden_dims=[args.hidden_dim] * 2, | ||||
|         act_cls="relu", | ||||
|         norm_cls="layer_norm_1d", | ||||
|     ) | ||||
|  | ||||
|     base_model = get_model(**model_kwargs) | ||||
|     base_model = base_model.to(args.device) | ||||
|   | ||||
| @@ -8,20 +8,6 @@ from xautodl.procedures import prepare_seed, prepare_logger | ||||
| from xautodl.datasets.synthetic_core import get_synthetic_env | ||||
| 
 | ||||
| 
 | ||||
| def lfna_setup(args): | ||||
|     prepare_seed(args.rand_seed) | ||||
|     logger = prepare_logger(args) | ||||
|     model_kwargs = dict( | ||||
|         config=dict(model_type="norm_mlp"), | ||||
|         input_dim=1, | ||||
|         output_dim=1, | ||||
|         hidden_dims=[args.hidden_dim] * 2, | ||||
|         act_cls="relu", | ||||
|         norm_cls="layer_norm_1d", | ||||
|     ) | ||||
|     return logger, model_kwargs | ||||
| 
 | ||||
| 
 | ||||
| def train_model(model, dataset, lr, epochs): | ||||
|     criterion = torch.nn.MSELoss() | ||||
|     optimizer = torch.optim.Adam(model.parameters(), lr=lr, amsgrad=True) | ||||
		Reference in New Issue
	
	Block a user