Update LFNA with train/valid
This commit is contained in:
parent
de8cf677d9
commit
5c851ac25a
@ -2,7 +2,8 @@
|
|||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||||
#####################################################
|
#####################################################
|
||||||
# python exps/LFNA/lfna.py --env_version v1 --workers 0
|
# python exps/LFNA/lfna.py --env_version v1 --workers 0
|
||||||
# python exps/LFNA/lfna.py --env_version v1 --device cuda
|
# python exps/LFNA/lfna.py --env_version v1 --device cuda --lr 0.001
|
||||||
|
# python exps/LFNA/lfna.py --env_version v1 --device cuda --lr 0.002
|
||||||
#####################################################
|
#####################################################
|
||||||
import sys, time, copy, torch, random, argparse
|
import sys, time, copy, torch, random, argparse
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
@ -58,9 +59,40 @@ def epoch_train(loader, meta_model, base_model, optimizer, criterion, device, lo
|
|||||||
return loss_meter
|
return loss_meter
|
||||||
|
|
||||||
|
|
||||||
|
def epoch_evaluate(loader, meta_model, base_model, criterion, device, logger):
|
||||||
|
with torch.no_grad():
|
||||||
|
base_model.eval()
|
||||||
|
meta_model.eval()
|
||||||
|
loss_meter = AverageMeter()
|
||||||
|
for ibatch, batch_data in enumerate(loader):
|
||||||
|
timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data
|
||||||
|
timestamps = timestamps.squeeze(dim=-1).to(device)
|
||||||
|
batch_seq_inputs = batch_seq_inputs.to(device)
|
||||||
|
batch_seq_targets = batch_seq_targets.to(device)
|
||||||
|
|
||||||
|
batch_seq_containers = meta_model(timestamps)
|
||||||
|
losses = []
|
||||||
|
for seq_containers, seq_inputs, seq_targets in zip(
|
||||||
|
batch_seq_containers, batch_seq_inputs, batch_seq_targets
|
||||||
|
):
|
||||||
|
for container, inputs, targets in zip(
|
||||||
|
seq_containers, seq_inputs, seq_targets
|
||||||
|
):
|
||||||
|
predictions = base_model.forward_with_container(inputs, container)
|
||||||
|
loss = criterion(predictions, targets)
|
||||||
|
losses.append(loss)
|
||||||
|
final_loss = torch.stack(losses).mean()
|
||||||
|
loss_meter.update(final_loss.item())
|
||||||
|
return loss_meter
|
||||||
|
|
||||||
|
|
||||||
def main(args):
|
def main(args):
|
||||||
logger, env_info, model_kwargs = lfna_setup(args)
|
logger, env_info, model_kwargs = lfna_setup(args)
|
||||||
dynamic_env = get_synthetic_env(mode="train", version=args.env_version)
|
train_env = get_synthetic_env(mode="train", version=args.env_version)
|
||||||
|
valid_env = get_synthetic_env(mode="valid", version=args.env_version)
|
||||||
|
logger.log("training enviornment: {:}".format(train_env))
|
||||||
|
logger.log("validation enviornment: {:}".format(valid_env))
|
||||||
|
|
||||||
base_model = get_model(**model_kwargs)
|
base_model = get_model(**model_kwargs)
|
||||||
base_model = base_model.to(args.device)
|
base_model = base_model.to(args.device)
|
||||||
criterion = torch.nn.MSELoss()
|
criterion = torch.nn.MSELoss()
|
||||||
@ -68,26 +100,25 @@ def main(args):
|
|||||||
shape_container = base_model.get_w_container().to_shape_container()
|
shape_container = base_model.get_w_container().to_shape_container()
|
||||||
|
|
||||||
# pre-train the hypernetwork
|
# pre-train the hypernetwork
|
||||||
timestamps = dynamic_env.get_timestamp(None)
|
timestamps = train_env.get_timestamp(None)
|
||||||
meta_model = LFNA_Meta(shape_container, args.layer_dim, args.time_dim, timestamps)
|
meta_model = LFNA_Meta(shape_container, args.layer_dim, args.time_dim, timestamps)
|
||||||
meta_model = meta_model.to(args.device)
|
meta_model = meta_model.to(args.device)
|
||||||
|
|
||||||
logger.log("The base-model has {:} weights.".format(base_model.numel()))
|
logger.log("The base-model has {:} weights.".format(base_model.numel()))
|
||||||
logger.log("The meta-model has {:} weights.".format(meta_model.numel()))
|
logger.log("The meta-model has {:} weights.".format(meta_model.numel()))
|
||||||
|
|
||||||
batch_sampler = EnvSampler(dynamic_env, args.meta_batch, args.sampler_enlarge)
|
batch_sampler = EnvSampler(train_env, args.meta_batch, args.sampler_enlarge)
|
||||||
dynamic_env.reset_max_seq_length(args.seq_length)
|
train_env.reset_max_seq_length(args.seq_length)
|
||||||
"""
|
valid_env.reset_max_seq_length(args.seq_length)
|
||||||
env_loader = torch.utils.data.DataLoader(
|
valid_env_loader = torch.utils.data.DataLoader(
|
||||||
dynamic_env,
|
valid_env,
|
||||||
batch_size=args.meta_batch,
|
batch_size=args.meta_batch,
|
||||||
shuffle=True,
|
shuffle=True,
|
||||||
num_workers=args.workers,
|
num_workers=args.workers,
|
||||||
pin_memory=True,
|
pin_memory=True,
|
||||||
)
|
)
|
||||||
"""
|
train_env_loader = torch.utils.data.DataLoader(
|
||||||
env_loader = torch.utils.data.DataLoader(
|
train_env,
|
||||||
dynamic_env,
|
|
||||||
batch_sampler=batch_sampler,
|
batch_sampler=batch_sampler,
|
||||||
num_workers=args.workers,
|
num_workers=args.workers,
|
||||||
pin_memory=True,
|
pin_memory=True,
|
||||||
@ -95,7 +126,7 @@ def main(args):
|
|||||||
|
|
||||||
optimizer = torch.optim.Adam(
|
optimizer = torch.optim.Adam(
|
||||||
meta_model.parameters(),
|
meta_model.parameters(),
|
||||||
lr=args.init_lr,
|
lr=args.lr,
|
||||||
weight_decay=args.weight_decay,
|
weight_decay=args.weight_decay,
|
||||||
amsgrad=True,
|
amsgrad=True,
|
||||||
)
|
)
|
||||||
@ -108,7 +139,7 @@ def main(args):
|
|||||||
logger.log("The meta-model is\n{:}".format(meta_model))
|
logger.log("The meta-model is\n{:}".format(meta_model))
|
||||||
logger.log("The optimizer is\n{:}".format(optimizer))
|
logger.log("The optimizer is\n{:}".format(optimizer))
|
||||||
logger.log("The scheduler is\n{:}".format(lr_scheduler))
|
logger.log("The scheduler is\n{:}".format(lr_scheduler))
|
||||||
logger.log("Per epoch iterations = {:}".format(len(env_loader)))
|
logger.log("Per epoch iterations = {:}".format(len(train_env_loader)))
|
||||||
|
|
||||||
if logger.path("model").exists():
|
if logger.path("model").exists():
|
||||||
ckp_data = torch.load(logger.path("model"))
|
ckp_data = torch.load(logger.path("model"))
|
||||||
@ -122,7 +153,7 @@ def main(args):
|
|||||||
"epochs",
|
"epochs",
|
||||||
"env_version",
|
"env_version",
|
||||||
"hidden_dim",
|
"hidden_dim",
|
||||||
"init_lr",
|
"lr",
|
||||||
"layer_dim",
|
"layer_dim",
|
||||||
"time_dim",
|
"time_dim",
|
||||||
"seq_length",
|
"seq_length",
|
||||||
@ -152,7 +183,7 @@ def main(args):
|
|||||||
)
|
)
|
||||||
|
|
||||||
loss_meter = epoch_train(
|
loss_meter = epoch_train(
|
||||||
env_loader,
|
train_env_loader,
|
||||||
meta_model,
|
meta_model,
|
||||||
base_model,
|
base_model,
|
||||||
optimizer,
|
optimizer,
|
||||||
@ -160,9 +191,16 @@ def main(args):
|
|||||||
args.device,
|
args.device,
|
||||||
logger,
|
logger,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
valid_loss_meter = epoch_evaluate(
|
||||||
|
valid_env_loader, meta_model, base_model, criterion, args.device, logger
|
||||||
|
)
|
||||||
logger.log(
|
logger.log(
|
||||||
head_str
|
head_str
|
||||||
+ " meta-loss: {meter.avg:.4f} ({meter.count:.0f})".format(meter=loss_meter)
|
+ " meta-train-loss: {meter.avg:.4f} ({meter.count:.0f})".format(
|
||||||
|
meter=loss_meter
|
||||||
|
)
|
||||||
|
+ " meta-valid-loss: {meter.val:.4f}".format(meter=valid_loss_meter)
|
||||||
+ " :: lr={:.5f}".format(min(lr_scheduler.get_last_lr()))
|
+ " :: lr={:.5f}".format(min(lr_scheduler.get_last_lr()))
|
||||||
+ " :: last-success={:}".format(last_success_epoch)
|
+ " :: last-success={:}".format(last_success_epoch)
|
||||||
)
|
)
|
||||||
@ -231,14 +269,14 @@ def main(args):
|
|||||||
#
|
#
|
||||||
new_param = meta_model.create_meta_embed()
|
new_param = meta_model.create_meta_embed()
|
||||||
optimizer = torch.optim.Adam(
|
optimizer = torch.optim.Adam(
|
||||||
[new_param], lr=args.init_lr, weight_decay=1e-5, amsgrad=True
|
[new_param], lr=args.refine_lr, weight_decay=1e-5, amsgrad=True
|
||||||
)
|
)
|
||||||
meta_model.replace_append_learnt(
|
meta_model.replace_append_learnt(
|
||||||
torch.Tensor([future_time]).to(args.device), new_param
|
torch.Tensor([future_time]).to(args.device), new_param
|
||||||
)
|
)
|
||||||
meta_model.eval()
|
meta_model.eval()
|
||||||
base_model.train()
|
base_model.train()
|
||||||
for iepoch in range(args.epochs):
|
for iepoch in range(args.refine_epochs):
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
[seq_containers] = meta_model(time_seqs)
|
[seq_containers] = meta_model(time_seqs)
|
||||||
future_container = seq_containers[-1]
|
future_container = seq_containers[-1]
|
||||||
@ -297,7 +335,7 @@ if __name__ == "__main__":
|
|||||||
)
|
)
|
||||||
#####
|
#####
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--init_lr",
|
"--lr",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.005,
|
default=0.005,
|
||||||
help="The initial learning rate for the optimizer (default is Adam)",
|
help="The initial learning rate for the optimizer (default is Adam)",
|
||||||
@ -321,10 +359,19 @@ if __name__ == "__main__":
|
|||||||
help="Enlarge the #iterations for an epoch",
|
help="Enlarge the #iterations for an epoch",
|
||||||
)
|
)
|
||||||
parser.add_argument("--epochs", type=int, default=10000, help="The total #epochs.")
|
parser.add_argument("--epochs", type=int, default=10000, help="The total #epochs.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--refine_lr",
|
||||||
|
type=float,
|
||||||
|
default=0.005,
|
||||||
|
help="The learning rate for the optimizer, during refine",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--refine_epochs", type=int, default=1000, help="The final refine #epochs."
|
||||||
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--early_stop_thresh",
|
"--early_stop_thresh",
|
||||||
type=int,
|
type=int,
|
||||||
default=50,
|
default=20,
|
||||||
help="The #epochs for early stop.",
|
help="The #epochs for early stop.",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -350,7 +397,7 @@ if __name__ == "__main__":
|
|||||||
args.hidden_dim,
|
args.hidden_dim,
|
||||||
args.layer_dim,
|
args.layer_dim,
|
||||||
args.time_dim,
|
args.time_dim,
|
||||||
args.init_lr,
|
args.lr,
|
||||||
args.weight_decay,
|
args.weight_decay,
|
||||||
args.epochs,
|
args.epochs,
|
||||||
args.env_version,
|
args.env_version,
|
||||||
|
@ -44,6 +44,7 @@ class LFNA_Meta(super_core.SuperModule):
|
|||||||
self._append_meta_embed = dict(fixed=None, learnt=None)
|
self._append_meta_embed = dict(fixed=None, learnt=None)
|
||||||
self._append_meta_timestamps = dict(fixed=None, learnt=None)
|
self._append_meta_timestamps = dict(fixed=None, learnt=None)
|
||||||
|
|
||||||
|
self._time_prob_drop = super_core.SuperDrop(dropout, (-1, 1), recover=False)
|
||||||
# build transformer
|
# build transformer
|
||||||
layers = []
|
layers = []
|
||||||
for ilayer in range(mha_depth):
|
for ilayer in range(mha_depth):
|
||||||
@ -149,10 +150,12 @@ class LFNA_Meta(super_core.SuperModule):
|
|||||||
meta_match = meta_match.view(batch, seq, -1)
|
meta_match = meta_match.view(batch, seq, -1)
|
||||||
# create the probability
|
# create the probability
|
||||||
time_probs = (1 / torch.exp(time_match_v * 10)).view(batch, seq, 1)
|
time_probs = (1 / torch.exp(time_match_v * 10)).view(batch, seq, 1)
|
||||||
if self.training:
|
|
||||||
time_probs[:, -1, :] = 0
|
x_time_probs = self._time_prob_drop(time_probs)
|
||||||
|
# if self.training:
|
||||||
|
# time_probs[:, -1, :] = 0
|
||||||
unknown_token = self._unknown_token.view(1, 1, -1)
|
unknown_token = self._unknown_token.view(1, 1, -1)
|
||||||
raw_meta_embed = time_probs * meta_match + (1 - time_probs) * unknown_token
|
raw_meta_embed = x_time_probs * meta_match + (1 - x_time_probs) * unknown_token
|
||||||
|
|
||||||
meta_embed = self.meta_corrector(raw_meta_embed)
|
meta_embed = self.meta_corrector(raw_meta_embed)
|
||||||
# create joint embed
|
# create joint embed
|
||||||
|
@ -151,12 +151,15 @@ class SyntheticDEnv(data.Dataset):
|
|||||||
return len(self._timestamp_generator)
|
return len(self._timestamp_generator)
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
return "{name}({cur_num:}/{total} elements, ndim={ndim}, num_per_task={num_per_task})".format(
|
return "{name}({cur_num:}/{total} elements, ndim={ndim}, num_per_task={num_per_task}, range=[{xrange_min:.5f}~{xrange_max:.5f}], mode={mode})".format(
|
||||||
name=self.__class__.__name__,
|
name=self.__class__.__name__,
|
||||||
cur_num=len(self),
|
cur_num=len(self),
|
||||||
total=len(self._timestamp_generator),
|
total=len(self._timestamp_generator),
|
||||||
ndim=self._ndim,
|
ndim=self._ndim,
|
||||||
num_per_task=self._num_per_task,
|
num_per_task=self._num_per_task,
|
||||||
|
xrange_min=self.min_timestamp,
|
||||||
|
xrange_max=self.max_timestamp,
|
||||||
|
mode=self._timestamp_generator.mode,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@ -15,6 +15,7 @@ from .super_norm import SuperLayerNorm1D
|
|||||||
from .super_norm import SuperSimpleLearnableNorm
|
from .super_norm import SuperSimpleLearnableNorm
|
||||||
from .super_norm import SuperIdentity
|
from .super_norm import SuperIdentity
|
||||||
from .super_dropout import SuperDropout
|
from .super_dropout import SuperDropout
|
||||||
|
from .super_dropout import SuperDrop
|
||||||
|
|
||||||
super_name2norm = {
|
super_name2norm = {
|
||||||
"simple_norm": SuperSimpleNorm,
|
"simple_norm": SuperSimpleNorm,
|
||||||
|
@ -6,7 +6,7 @@ import torch.nn as nn
|
|||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
|
|
||||||
import math
|
import math
|
||||||
from typing import Optional, Callable
|
from typing import Optional, Callable, Tuple
|
||||||
|
|
||||||
import spaces
|
import spaces
|
||||||
from .super_module import SuperModule
|
from .super_module import SuperModule
|
||||||
@ -38,3 +38,46 @@ class SuperDropout(SuperModule):
|
|||||||
def extra_repr(self) -> str:
|
def extra_repr(self) -> str:
|
||||||
xstr = "inplace=True" if self._inplace else ""
|
xstr = "inplace=True" if self._inplace else ""
|
||||||
return "p={:}".format(self._p) + ", " + xstr
|
return "p={:}".format(self._p) + ", " + xstr
|
||||||
|
|
||||||
|
|
||||||
|
class SuperDrop(SuperModule):
|
||||||
|
"""Applies a the drop-path function element-wise."""
|
||||||
|
|
||||||
|
def __init__(self, p: float, dims: Tuple[int], recover: bool = True) -> None:
|
||||||
|
super(SuperDrop, self).__init__()
|
||||||
|
self._p = p
|
||||||
|
self._dims = dims
|
||||||
|
self._recover = recover
|
||||||
|
|
||||||
|
@property
|
||||||
|
def abstract_search_space(self):
|
||||||
|
return spaces.VirtualNode(id(self))
|
||||||
|
|
||||||
|
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
|
||||||
|
return self.forward_raw(input)
|
||||||
|
|
||||||
|
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
|
||||||
|
if not self.training or self._p <= 0:
|
||||||
|
return input
|
||||||
|
keep_prob = 1 - self._p
|
||||||
|
shape = [input.shape[0]] + [
|
||||||
|
x if y == -1 else y for x, y in zip(input.shape[1:], self._dims)
|
||||||
|
]
|
||||||
|
random_tensor = keep_prob + torch.rand(
|
||||||
|
shape, dtype=input.dtype, device=input.device
|
||||||
|
)
|
||||||
|
random_tensor.floor_() # binarize
|
||||||
|
if self._recover:
|
||||||
|
return input.div(keep_prob) * random_tensor
|
||||||
|
else:
|
||||||
|
return input * random_tensor # as masks
|
||||||
|
|
||||||
|
def forward_with_container(self, input, container, prefix=[]):
|
||||||
|
return self.forward_raw(input)
|
||||||
|
|
||||||
|
def extra_repr(self) -> str:
|
||||||
|
return (
|
||||||
|
"p={:}".format(self._p)
|
||||||
|
+ ", dims={:}".format(self._dims)
|
||||||
|
+ ", recover={:}".format(self._recover)
|
||||||
|
)
|
||||||
|
Loading…
Reference in New Issue
Block a user