Update LFNA with train/valid
This commit is contained in:
		| @@ -2,7 +2,8 @@ | |||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||||
| ##################################################### | ##################################################### | ||||||
| # python exps/LFNA/lfna.py --env_version v1 --workers 0 | # python exps/LFNA/lfna.py --env_version v1 --workers 0 | ||||||
| # python exps/LFNA/lfna.py --env_version v1 --device cuda | # python exps/LFNA/lfna.py --env_version v1 --device cuda --lr 0.001 | ||||||
|  | # python exps/LFNA/lfna.py --env_version v1 --device cuda --lr 0.002 | ||||||
| ##################################################### | ##################################################### | ||||||
| import sys, time, copy, torch, random, argparse | import sys, time, copy, torch, random, argparse | ||||||
| from tqdm import tqdm | from tqdm import tqdm | ||||||
| @@ -58,9 +59,40 @@ def epoch_train(loader, meta_model, base_model, optimizer, criterion, device, lo | |||||||
|     return loss_meter |     return loss_meter | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def epoch_evaluate(loader, meta_model, base_model, criterion, device, logger): | ||||||
|  |     with torch.no_grad(): | ||||||
|  |         base_model.eval() | ||||||
|  |         meta_model.eval() | ||||||
|  |         loss_meter = AverageMeter() | ||||||
|  |         for ibatch, batch_data in enumerate(loader): | ||||||
|  |             timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data | ||||||
|  |             timestamps = timestamps.squeeze(dim=-1).to(device) | ||||||
|  |             batch_seq_inputs = batch_seq_inputs.to(device) | ||||||
|  |             batch_seq_targets = batch_seq_targets.to(device) | ||||||
|  |  | ||||||
|  |             batch_seq_containers = meta_model(timestamps) | ||||||
|  |             losses = [] | ||||||
|  |             for seq_containers, seq_inputs, seq_targets in zip( | ||||||
|  |                 batch_seq_containers, batch_seq_inputs, batch_seq_targets | ||||||
|  |             ): | ||||||
|  |                 for container, inputs, targets in zip( | ||||||
|  |                     seq_containers, seq_inputs, seq_targets | ||||||
|  |                 ): | ||||||
|  |                     predictions = base_model.forward_with_container(inputs, container) | ||||||
|  |                     loss = criterion(predictions, targets) | ||||||
|  |                     losses.append(loss) | ||||||
|  |             final_loss = torch.stack(losses).mean() | ||||||
|  |             loss_meter.update(final_loss.item()) | ||||||
|  |     return loss_meter | ||||||
|  |  | ||||||
|  |  | ||||||
| def main(args): | def main(args): | ||||||
|     logger, env_info, model_kwargs = lfna_setup(args) |     logger, env_info, model_kwargs = lfna_setup(args) | ||||||
|     dynamic_env = get_synthetic_env(mode="train", version=args.env_version) |     train_env = get_synthetic_env(mode="train", version=args.env_version) | ||||||
|  |     valid_env = get_synthetic_env(mode="valid", version=args.env_version) | ||||||
|  |     logger.log("training enviornment: {:}".format(train_env)) | ||||||
|  |     logger.log("validation enviornment: {:}".format(valid_env)) | ||||||
|  |  | ||||||
|     base_model = get_model(**model_kwargs) |     base_model = get_model(**model_kwargs) | ||||||
|     base_model = base_model.to(args.device) |     base_model = base_model.to(args.device) | ||||||
|     criterion = torch.nn.MSELoss() |     criterion = torch.nn.MSELoss() | ||||||
| @@ -68,26 +100,25 @@ def main(args): | |||||||
|     shape_container = base_model.get_w_container().to_shape_container() |     shape_container = base_model.get_w_container().to_shape_container() | ||||||
|  |  | ||||||
|     # pre-train the hypernetwork |     # pre-train the hypernetwork | ||||||
|     timestamps = dynamic_env.get_timestamp(None) |     timestamps = train_env.get_timestamp(None) | ||||||
|     meta_model = LFNA_Meta(shape_container, args.layer_dim, args.time_dim, timestamps) |     meta_model = LFNA_Meta(shape_container, args.layer_dim, args.time_dim, timestamps) | ||||||
|     meta_model = meta_model.to(args.device) |     meta_model = meta_model.to(args.device) | ||||||
|  |  | ||||||
|     logger.log("The base-model has {:} weights.".format(base_model.numel())) |     logger.log("The base-model has {:} weights.".format(base_model.numel())) | ||||||
|     logger.log("The meta-model has {:} weights.".format(meta_model.numel())) |     logger.log("The meta-model has {:} weights.".format(meta_model.numel())) | ||||||
|  |  | ||||||
|     batch_sampler = EnvSampler(dynamic_env, args.meta_batch, args.sampler_enlarge) |     batch_sampler = EnvSampler(train_env, args.meta_batch, args.sampler_enlarge) | ||||||
|     dynamic_env.reset_max_seq_length(args.seq_length) |     train_env.reset_max_seq_length(args.seq_length) | ||||||
|     """ |     valid_env.reset_max_seq_length(args.seq_length) | ||||||
|     env_loader = torch.utils.data.DataLoader( |     valid_env_loader = torch.utils.data.DataLoader( | ||||||
|         dynamic_env, |         valid_env, | ||||||
|         batch_size=args.meta_batch, |         batch_size=args.meta_batch, | ||||||
|         shuffle=True, |         shuffle=True, | ||||||
|         num_workers=args.workers, |         num_workers=args.workers, | ||||||
|         pin_memory=True, |         pin_memory=True, | ||||||
|     ) |     ) | ||||||
|     """ |     train_env_loader = torch.utils.data.DataLoader( | ||||||
|     env_loader = torch.utils.data.DataLoader( |         train_env, | ||||||
|         dynamic_env, |  | ||||||
|         batch_sampler=batch_sampler, |         batch_sampler=batch_sampler, | ||||||
|         num_workers=args.workers, |         num_workers=args.workers, | ||||||
|         pin_memory=True, |         pin_memory=True, | ||||||
| @@ -95,7 +126,7 @@ def main(args): | |||||||
|  |  | ||||||
|     optimizer = torch.optim.Adam( |     optimizer = torch.optim.Adam( | ||||||
|         meta_model.parameters(), |         meta_model.parameters(), | ||||||
|         lr=args.init_lr, |         lr=args.lr, | ||||||
|         weight_decay=args.weight_decay, |         weight_decay=args.weight_decay, | ||||||
|         amsgrad=True, |         amsgrad=True, | ||||||
|     ) |     ) | ||||||
| @@ -108,7 +139,7 @@ def main(args): | |||||||
|     logger.log("The meta-model is\n{:}".format(meta_model)) |     logger.log("The meta-model is\n{:}".format(meta_model)) | ||||||
|     logger.log("The optimizer is\n{:}".format(optimizer)) |     logger.log("The optimizer is\n{:}".format(optimizer)) | ||||||
|     logger.log("The scheduler is\n{:}".format(lr_scheduler)) |     logger.log("The scheduler is\n{:}".format(lr_scheduler)) | ||||||
|     logger.log("Per epoch iterations = {:}".format(len(env_loader))) |     logger.log("Per epoch iterations = {:}".format(len(train_env_loader))) | ||||||
|  |  | ||||||
|     if logger.path("model").exists(): |     if logger.path("model").exists(): | ||||||
|         ckp_data = torch.load(logger.path("model")) |         ckp_data = torch.load(logger.path("model")) | ||||||
| @@ -122,7 +153,7 @@ def main(args): | |||||||
|             "epochs", |             "epochs", | ||||||
|             "env_version", |             "env_version", | ||||||
|             "hidden_dim", |             "hidden_dim", | ||||||
|             "init_lr", |             "lr", | ||||||
|             "layer_dim", |             "layer_dim", | ||||||
|             "time_dim", |             "time_dim", | ||||||
|             "seq_length", |             "seq_length", | ||||||
| @@ -152,7 +183,7 @@ def main(args): | |||||||
|         ) |         ) | ||||||
|  |  | ||||||
|         loss_meter = epoch_train( |         loss_meter = epoch_train( | ||||||
|             env_loader, |             train_env_loader, | ||||||
|             meta_model, |             meta_model, | ||||||
|             base_model, |             base_model, | ||||||
|             optimizer, |             optimizer, | ||||||
| @@ -160,9 +191,16 @@ def main(args): | |||||||
|             args.device, |             args.device, | ||||||
|             logger, |             logger, | ||||||
|         ) |         ) | ||||||
|  |  | ||||||
|  |         valid_loss_meter = epoch_evaluate( | ||||||
|  |             valid_env_loader, meta_model, base_model, criterion, args.device, logger | ||||||
|  |         ) | ||||||
|         logger.log( |         logger.log( | ||||||
|             head_str |             head_str | ||||||
|             + " meta-loss: {meter.avg:.4f} ({meter.count:.0f})".format(meter=loss_meter) |             + " meta-train-loss: {meter.avg:.4f} ({meter.count:.0f})".format( | ||||||
|  |                 meter=loss_meter | ||||||
|  |             ) | ||||||
|  |             + " meta-valid-loss: {meter.val:.4f}".format(meter=valid_loss_meter) | ||||||
|             + " :: lr={:.5f}".format(min(lr_scheduler.get_last_lr())) |             + " :: lr={:.5f}".format(min(lr_scheduler.get_last_lr())) | ||||||
|             + "  :: last-success={:}".format(last_success_epoch) |             + "  :: last-success={:}".format(last_success_epoch) | ||||||
|         ) |         ) | ||||||
| @@ -231,14 +269,14 @@ def main(args): | |||||||
|         # |         # | ||||||
|         new_param = meta_model.create_meta_embed() |         new_param = meta_model.create_meta_embed() | ||||||
|         optimizer = torch.optim.Adam( |         optimizer = torch.optim.Adam( | ||||||
|             [new_param], lr=args.init_lr, weight_decay=1e-5, amsgrad=True |             [new_param], lr=args.refine_lr, weight_decay=1e-5, amsgrad=True | ||||||
|         ) |         ) | ||||||
|         meta_model.replace_append_learnt( |         meta_model.replace_append_learnt( | ||||||
|             torch.Tensor([future_time]).to(args.device), new_param |             torch.Tensor([future_time]).to(args.device), new_param | ||||||
|         ) |         ) | ||||||
|         meta_model.eval() |         meta_model.eval() | ||||||
|         base_model.train() |         base_model.train() | ||||||
|         for iepoch in range(args.epochs): |         for iepoch in range(args.refine_epochs): | ||||||
|             optimizer.zero_grad() |             optimizer.zero_grad() | ||||||
|             [seq_containers] = meta_model(time_seqs) |             [seq_containers] = meta_model(time_seqs) | ||||||
|             future_container = seq_containers[-1] |             future_container = seq_containers[-1] | ||||||
| @@ -297,7 +335,7 @@ if __name__ == "__main__": | |||||||
|     ) |     ) | ||||||
|     ##### |     ##### | ||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
|         "--init_lr", |         "--lr", | ||||||
|         type=float, |         type=float, | ||||||
|         default=0.005, |         default=0.005, | ||||||
|         help="The initial learning rate for the optimizer (default is Adam)", |         help="The initial learning rate for the optimizer (default is Adam)", | ||||||
| @@ -321,10 +359,19 @@ if __name__ == "__main__": | |||||||
|         help="Enlarge the #iterations for an epoch", |         help="Enlarge the #iterations for an epoch", | ||||||
|     ) |     ) | ||||||
|     parser.add_argument("--epochs", type=int, default=10000, help="The total #epochs.") |     parser.add_argument("--epochs", type=int, default=10000, help="The total #epochs.") | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--refine_lr", | ||||||
|  |         type=float, | ||||||
|  |         default=0.005, | ||||||
|  |         help="The learning rate for the optimizer, during refine", | ||||||
|  |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--refine_epochs", type=int, default=1000, help="The final refine #epochs." | ||||||
|  |     ) | ||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
|         "--early_stop_thresh", |         "--early_stop_thresh", | ||||||
|         type=int, |         type=int, | ||||||
|         default=50, |         default=20, | ||||||
|         help="The #epochs for early stop.", |         help="The #epochs for early stop.", | ||||||
|     ) |     ) | ||||||
|     parser.add_argument( |     parser.add_argument( | ||||||
| @@ -350,7 +397,7 @@ if __name__ == "__main__": | |||||||
|         args.hidden_dim, |         args.hidden_dim, | ||||||
|         args.layer_dim, |         args.layer_dim, | ||||||
|         args.time_dim, |         args.time_dim, | ||||||
|         args.init_lr, |         args.lr, | ||||||
|         args.weight_decay, |         args.weight_decay, | ||||||
|         args.epochs, |         args.epochs, | ||||||
|         args.env_version, |         args.env_version, | ||||||
|   | |||||||
| @@ -44,6 +44,7 @@ class LFNA_Meta(super_core.SuperModule): | |||||||
|         self._append_meta_embed = dict(fixed=None, learnt=None) |         self._append_meta_embed = dict(fixed=None, learnt=None) | ||||||
|         self._append_meta_timestamps = dict(fixed=None, learnt=None) |         self._append_meta_timestamps = dict(fixed=None, learnt=None) | ||||||
|  |  | ||||||
|  |         self._time_prob_drop = super_core.SuperDrop(dropout, (-1, 1), recover=False) | ||||||
|         # build transformer |         # build transformer | ||||||
|         layers = [] |         layers = [] | ||||||
|         for ilayer in range(mha_depth): |         for ilayer in range(mha_depth): | ||||||
| @@ -149,10 +150,12 @@ class LFNA_Meta(super_core.SuperModule): | |||||||
|         meta_match = meta_match.view(batch, seq, -1) |         meta_match = meta_match.view(batch, seq, -1) | ||||||
|         # create the probability |         # create the probability | ||||||
|         time_probs = (1 / torch.exp(time_match_v * 10)).view(batch, seq, 1) |         time_probs = (1 / torch.exp(time_match_v * 10)).view(batch, seq, 1) | ||||||
|         if self.training: |  | ||||||
|             time_probs[:, -1, :] = 0 |         x_time_probs = self._time_prob_drop(time_probs) | ||||||
|  |         # if self.training: | ||||||
|  |         #    time_probs[:, -1, :] = 0 | ||||||
|         unknown_token = self._unknown_token.view(1, 1, -1) |         unknown_token = self._unknown_token.view(1, 1, -1) | ||||||
|         raw_meta_embed = time_probs * meta_match + (1 - time_probs) * unknown_token |         raw_meta_embed = x_time_probs * meta_match + (1 - x_time_probs) * unknown_token | ||||||
|  |  | ||||||
|         meta_embed = self.meta_corrector(raw_meta_embed) |         meta_embed = self.meta_corrector(raw_meta_embed) | ||||||
|         # create joint embed |         # create joint embed | ||||||
|   | |||||||
| @@ -151,12 +151,15 @@ class SyntheticDEnv(data.Dataset): | |||||||
|         return len(self._timestamp_generator) |         return len(self._timestamp_generator) | ||||||
|  |  | ||||||
|     def __repr__(self): |     def __repr__(self): | ||||||
|         return "{name}({cur_num:}/{total} elements, ndim={ndim}, num_per_task={num_per_task})".format( |         return "{name}({cur_num:}/{total} elements, ndim={ndim}, num_per_task={num_per_task}, range=[{xrange_min:.5f}~{xrange_max:.5f}], mode={mode})".format( | ||||||
|             name=self.__class__.__name__, |             name=self.__class__.__name__, | ||||||
|             cur_num=len(self), |             cur_num=len(self), | ||||||
|             total=len(self._timestamp_generator), |             total=len(self._timestamp_generator), | ||||||
|             ndim=self._ndim, |             ndim=self._ndim, | ||||||
|             num_per_task=self._num_per_task, |             num_per_task=self._num_per_task, | ||||||
|  |             xrange_min=self.min_timestamp, | ||||||
|  |             xrange_max=self.max_timestamp, | ||||||
|  |             mode=self._timestamp_generator.mode, | ||||||
|         ) |         ) | ||||||
|  |  | ||||||
|  |  | ||||||
|   | |||||||
| @@ -15,6 +15,7 @@ from .super_norm import SuperLayerNorm1D | |||||||
| from .super_norm import SuperSimpleLearnableNorm | from .super_norm import SuperSimpleLearnableNorm | ||||||
| from .super_norm import SuperIdentity | from .super_norm import SuperIdentity | ||||||
| from .super_dropout import SuperDropout | from .super_dropout import SuperDropout | ||||||
|  | from .super_dropout import SuperDrop | ||||||
|  |  | ||||||
| super_name2norm = { | super_name2norm = { | ||||||
|     "simple_norm": SuperSimpleNorm, |     "simple_norm": SuperSimpleNorm, | ||||||
|   | |||||||
| @@ -6,7 +6,7 @@ import torch.nn as nn | |||||||
| import torch.nn.functional as F | import torch.nn.functional as F | ||||||
|  |  | ||||||
| import math | import math | ||||||
| from typing import Optional, Callable | from typing import Optional, Callable, Tuple | ||||||
|  |  | ||||||
| import spaces | import spaces | ||||||
| from .super_module import SuperModule | from .super_module import SuperModule | ||||||
| @@ -38,3 +38,46 @@ class SuperDropout(SuperModule): | |||||||
|     def extra_repr(self) -> str: |     def extra_repr(self) -> str: | ||||||
|         xstr = "inplace=True" if self._inplace else "" |         xstr = "inplace=True" if self._inplace else "" | ||||||
|         return "p={:}".format(self._p) + ", " + xstr |         return "p={:}".format(self._p) + ", " + xstr | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class SuperDrop(SuperModule): | ||||||
|  |     """Applies a the drop-path function element-wise.""" | ||||||
|  |  | ||||||
|  |     def __init__(self, p: float, dims: Tuple[int], recover: bool = True) -> None: | ||||||
|  |         super(SuperDrop, self).__init__() | ||||||
|  |         self._p = p | ||||||
|  |         self._dims = dims | ||||||
|  |         self._recover = recover | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def abstract_search_space(self): | ||||||
|  |         return spaces.VirtualNode(id(self)) | ||||||
|  |  | ||||||
|  |     def forward_candidate(self, input: torch.Tensor) -> torch.Tensor: | ||||||
|  |         return self.forward_raw(input) | ||||||
|  |  | ||||||
|  |     def forward_raw(self, input: torch.Tensor) -> torch.Tensor: | ||||||
|  |         if not self.training or self._p <= 0: | ||||||
|  |             return input | ||||||
|  |         keep_prob = 1 - self._p | ||||||
|  |         shape = [input.shape[0]] + [ | ||||||
|  |             x if y == -1 else y for x, y in zip(input.shape[1:], self._dims) | ||||||
|  |         ] | ||||||
|  |         random_tensor = keep_prob + torch.rand( | ||||||
|  |             shape, dtype=input.dtype, device=input.device | ||||||
|  |         ) | ||||||
|  |         random_tensor.floor_()  # binarize | ||||||
|  |         if self._recover: | ||||||
|  |             return input.div(keep_prob) * random_tensor | ||||||
|  |         else: | ||||||
|  |             return input * random_tensor  # as masks | ||||||
|  |  | ||||||
|  |     def forward_with_container(self, input, container, prefix=[]): | ||||||
|  |         return self.forward_raw(input) | ||||||
|  |  | ||||||
|  |     def extra_repr(self) -> str: | ||||||
|  |         return ( | ||||||
|  |             "p={:}".format(self._p) | ||||||
|  |             + ", dims={:}".format(self._dims) | ||||||
|  |             + ", recover={:}".format(self._recover) | ||||||
|  |         ) | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user