Update LFNA with resume
This commit is contained in:
parent
b11cfe263d
commit
de8cf677d9
@ -101,21 +101,49 @@ def main(args):
|
||||
)
|
||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
optimizer,
|
||||
milestones=[
|
||||
int(args.epochs * 0.8),
|
||||
int(args.epochs * 0.9),
|
||||
],
|
||||
milestones=[1, 2],
|
||||
gamma=0.1,
|
||||
)
|
||||
logger.log("The base-model is\n{:}".format(base_model))
|
||||
logger.log("The meta-model is\n{:}".format(meta_model))
|
||||
logger.log("The optimizer is\n{:}".format(optimizer))
|
||||
logger.log("The scheduler is\n{:}".format(lr_scheduler))
|
||||
logger.log("Per epoch iterations = {:}".format(len(env_loader)))
|
||||
|
||||
# LFNA meta-training
|
||||
if logger.path("model").exists():
|
||||
ckp_data = torch.load(logger.path("model"))
|
||||
base_model.load_state_dict(ckp_data["base_model"])
|
||||
meta_model.load_state_dict(ckp_data["meta_model"])
|
||||
optimizer.load_state_dict(ckp_data["optimizer"])
|
||||
lr_scheduler.load_state_dict(ckp_data["lr_scheduler"])
|
||||
last_success_epoch = ckp_data["last_success_epoch"]
|
||||
start_epoch = ckp_data["iepoch"] + 1
|
||||
check_strs = [
|
||||
"epochs",
|
||||
"env_version",
|
||||
"hidden_dim",
|
||||
"init_lr",
|
||||
"layer_dim",
|
||||
"time_dim",
|
||||
"seq_length",
|
||||
]
|
||||
for xstr in check_strs:
|
||||
cx = getattr(args, xstr)
|
||||
px = getattr(ckp_data["args"], xstr)
|
||||
assert cx == px, "[{:}] {:} vs {:}".format(xstr, cx, ps)
|
||||
success, _ = meta_model.save_best(ckp_data["cur_score"])
|
||||
logger.log("Load ckp from {:}".format(logger.path("model")))
|
||||
if success:
|
||||
logger.log(
|
||||
"Re-save the best model with score={:}".format(ckp_data["cur_score"])
|
||||
)
|
||||
else:
|
||||
start_epoch, last_success_epoch = 0, 0
|
||||
|
||||
# LFNA meta-train
|
||||
meta_model.set_best_dir(logger.path(None) / "checkpoint")
|
||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
||||
last_success_epoch = 0
|
||||
for iepoch in range(args.epochs):
|
||||
for iepoch in range(start_epoch, args.epochs):
|
||||
|
||||
head_str = "[{:}] [{:04d}/{:04d}] ".format(
|
||||
time_string(), iepoch, args.epochs
|
||||
@ -132,11 +160,11 @@ def main(args):
|
||||
args.device,
|
||||
logger,
|
||||
)
|
||||
lr_scheduler.step()
|
||||
logger.log(
|
||||
head_str
|
||||
+ " meta-loss: {meter.avg:.4f} ({meter.count:.0f})".format(meter=loss_meter)
|
||||
+ " :: lr={:.5f}".format(min(lr_scheduler.get_last_lr()))
|
||||
+ " :: last-success={:}".format(last_success_epoch)
|
||||
)
|
||||
success, best_score = meta_model.save_best(-loss_meter.avg)
|
||||
if success:
|
||||
@ -145,8 +173,11 @@ def main(args):
|
||||
save_checkpoint(
|
||||
{
|
||||
"meta_model": meta_model.state_dict(),
|
||||
"base_model": base_model.state_dict(),
|
||||
"optimizer": optimizer.state_dict(),
|
||||
"lr_scheduler": lr_scheduler.state_dict(),
|
||||
"last_success_epoch": last_success_epoch,
|
||||
"cur_score": -loss_meter.avg,
|
||||
"iepoch": iepoch,
|
||||
"args": args,
|
||||
},
|
||||
@ -154,8 +185,12 @@ def main(args):
|
||||
logger,
|
||||
)
|
||||
if iepoch - last_success_epoch >= args.early_stop_thresh:
|
||||
logger.log("Early stop at {:}".format(iepoch))
|
||||
break
|
||||
if lr_scheduler.last_epoch > 2:
|
||||
logger.log("Early stop at {:}".format(iepoch))
|
||||
break
|
||||
else:
|
||||
last_epoch.step()
|
||||
logger.log("Decay the lr [{:}]".format(lr_scheduler.last_epoch))
|
||||
|
||||
per_epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
@ -199,7 +234,7 @@ def main(args):
|
||||
[new_param], lr=args.init_lr, weight_decay=1e-5, amsgrad=True
|
||||
)
|
||||
meta_model.replace_append_learnt(
|
||||
torch.Tensor([future_time], device=args.device), new_param
|
||||
torch.Tensor([future_time]).to(args.device), new_param
|
||||
)
|
||||
meta_model.eval()
|
||||
base_model.train()
|
||||
@ -289,8 +324,8 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--early_stop_thresh",
|
||||
type=int,
|
||||
default=100,
|
||||
help="The maximum epochs for early stop.",
|
||||
default=50,
|
||||
help="The #epochs for early stop.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--seq_length", type=int, default=5, help="The sequence length."
|
||||
|
@ -102,9 +102,11 @@ class LFNA_Meta(super_core.SuperModule):
|
||||
return torch.cat(meta_embed)
|
||||
|
||||
def create_meta_embed(self):
|
||||
param = torch.nn.Parameter(torch.Tensor(1, self._time_embed_dim))
|
||||
param = torch.Tensor(1, self._time_embed_dim)
|
||||
trunc_normal_(param, std=0.02)
|
||||
return param.to(self._super_meta_embed.device)
|
||||
param = param.to(self._super_meta_embed.device)
|
||||
param = torch.nn.Parameter(param, True)
|
||||
return param
|
||||
|
||||
def get_closest_meta_distance(self, timestamp):
|
||||
with torch.no_grad():
|
||||
@ -112,12 +114,14 @@ class LFNA_Meta(super_core.SuperModule):
|
||||
return torch.min(distances).item()
|
||||
|
||||
def replace_append_learnt(self, timestamp, meta_embed):
|
||||
self._append_meta_embed["learnt"] = meta_embed
|
||||
self._append_meta_timestamps["learnt"] = timestamp
|
||||
self._append_meta_embed["learnt"] = meta_embed
|
||||
|
||||
def append_fixed(self, timestamp, meta_embed):
|
||||
with torch.no_grad():
|
||||
timestamp, meta_embed = timestamp.clone(), meta_embed.clone()
|
||||
device = self._super_meta_embed.device
|
||||
timestamp = timestamp.detach().clone().to(device)
|
||||
meta_embed = meta_embed.detach().clone().to(device)
|
||||
if self._append_meta_timestamps["fixed"] is None:
|
||||
self._append_meta_timestamps["fixed"] = timestamp
|
||||
else:
|
||||
|
@ -3,6 +3,7 @@
|
||||
#####################################################
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
import abc
|
||||
import tempfile
|
||||
import warnings
|
||||
@ -90,6 +91,10 @@ class SuperModule(abc.ABC, nn.Module):
|
||||
total += buf.numel()
|
||||
return total
|
||||
|
||||
def set_best_dir(self, xdir):
|
||||
self._meta_info[BEST_DIR_KEY] = str(xdir)
|
||||
Path(xdir).mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def save_best(self, score):
|
||||
if BEST_DIR_KEY not in self._meta_info:
|
||||
tempdir = tempfile.mkdtemp("-xlayers")
|
||||
@ -97,7 +102,7 @@ class SuperModule(abc.ABC, nn.Module):
|
||||
if BEST_SCORE_KEY not in self._meta_info:
|
||||
self._meta_info[BEST_SCORE_KEY] = None
|
||||
best_score = self._meta_info[BEST_SCORE_KEY]
|
||||
if best_score is None or best_score < score:
|
||||
if best_score is None or best_score <= score:
|
||||
best_save_path = os.path.join(
|
||||
self._meta_info[BEST_DIR_KEY],
|
||||
"best-{:}.pth".format(self.__class__.__name__),
|
||||
|
Loading…
Reference in New Issue
Block a user