Update LFNA with train/valid
This commit is contained in:
		| @@ -2,7 +2,8 @@ | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| # python exps/LFNA/lfna.py --env_version v1 --workers 0 | ||||
| # python exps/LFNA/lfna.py --env_version v1 --device cuda | ||||
| # python exps/LFNA/lfna.py --env_version v1 --device cuda --lr 0.001 | ||||
| # python exps/LFNA/lfna.py --env_version v1 --device cuda --lr 0.002 | ||||
| ##################################################### | ||||
| import sys, time, copy, torch, random, argparse | ||||
| from tqdm import tqdm | ||||
| @@ -58,9 +59,40 @@ def epoch_train(loader, meta_model, base_model, optimizer, criterion, device, lo | ||||
|     return loss_meter | ||||
|  | ||||
|  | ||||
| def epoch_evaluate(loader, meta_model, base_model, criterion, device, logger): | ||||
|     with torch.no_grad(): | ||||
|         base_model.eval() | ||||
|         meta_model.eval() | ||||
|         loss_meter = AverageMeter() | ||||
|         for ibatch, batch_data in enumerate(loader): | ||||
|             timestamps, (batch_seq_inputs, batch_seq_targets) = batch_data | ||||
|             timestamps = timestamps.squeeze(dim=-1).to(device) | ||||
|             batch_seq_inputs = batch_seq_inputs.to(device) | ||||
|             batch_seq_targets = batch_seq_targets.to(device) | ||||
|  | ||||
|             batch_seq_containers = meta_model(timestamps) | ||||
|             losses = [] | ||||
|             for seq_containers, seq_inputs, seq_targets in zip( | ||||
|                 batch_seq_containers, batch_seq_inputs, batch_seq_targets | ||||
|             ): | ||||
|                 for container, inputs, targets in zip( | ||||
|                     seq_containers, seq_inputs, seq_targets | ||||
|                 ): | ||||
|                     predictions = base_model.forward_with_container(inputs, container) | ||||
|                     loss = criterion(predictions, targets) | ||||
|                     losses.append(loss) | ||||
|             final_loss = torch.stack(losses).mean() | ||||
|             loss_meter.update(final_loss.item()) | ||||
|     return loss_meter | ||||
|  | ||||
|  | ||||
| def main(args): | ||||
|     logger, env_info, model_kwargs = lfna_setup(args) | ||||
|     dynamic_env = get_synthetic_env(mode="train", version=args.env_version) | ||||
|     train_env = get_synthetic_env(mode="train", version=args.env_version) | ||||
|     valid_env = get_synthetic_env(mode="valid", version=args.env_version) | ||||
|     logger.log("training enviornment: {:}".format(train_env)) | ||||
|     logger.log("validation enviornment: {:}".format(valid_env)) | ||||
|  | ||||
|     base_model = get_model(**model_kwargs) | ||||
|     base_model = base_model.to(args.device) | ||||
|     criterion = torch.nn.MSELoss() | ||||
| @@ -68,26 +100,25 @@ def main(args): | ||||
|     shape_container = base_model.get_w_container().to_shape_container() | ||||
|  | ||||
|     # pre-train the hypernetwork | ||||
|     timestamps = dynamic_env.get_timestamp(None) | ||||
|     timestamps = train_env.get_timestamp(None) | ||||
|     meta_model = LFNA_Meta(shape_container, args.layer_dim, args.time_dim, timestamps) | ||||
|     meta_model = meta_model.to(args.device) | ||||
|  | ||||
|     logger.log("The base-model has {:} weights.".format(base_model.numel())) | ||||
|     logger.log("The meta-model has {:} weights.".format(meta_model.numel())) | ||||
|  | ||||
|     batch_sampler = EnvSampler(dynamic_env, args.meta_batch, args.sampler_enlarge) | ||||
|     dynamic_env.reset_max_seq_length(args.seq_length) | ||||
|     """ | ||||
|     env_loader = torch.utils.data.DataLoader( | ||||
|         dynamic_env, | ||||
|     batch_sampler = EnvSampler(train_env, args.meta_batch, args.sampler_enlarge) | ||||
|     train_env.reset_max_seq_length(args.seq_length) | ||||
|     valid_env.reset_max_seq_length(args.seq_length) | ||||
|     valid_env_loader = torch.utils.data.DataLoader( | ||||
|         valid_env, | ||||
|         batch_size=args.meta_batch, | ||||
|         shuffle=True, | ||||
|         num_workers=args.workers, | ||||
|         pin_memory=True, | ||||
|     ) | ||||
|     """ | ||||
|     env_loader = torch.utils.data.DataLoader( | ||||
|         dynamic_env, | ||||
|     train_env_loader = torch.utils.data.DataLoader( | ||||
|         train_env, | ||||
|         batch_sampler=batch_sampler, | ||||
|         num_workers=args.workers, | ||||
|         pin_memory=True, | ||||
| @@ -95,7 +126,7 @@ def main(args): | ||||
|  | ||||
|     optimizer = torch.optim.Adam( | ||||
|         meta_model.parameters(), | ||||
|         lr=args.init_lr, | ||||
|         lr=args.lr, | ||||
|         weight_decay=args.weight_decay, | ||||
|         amsgrad=True, | ||||
|     ) | ||||
| @@ -108,7 +139,7 @@ def main(args): | ||||
|     logger.log("The meta-model is\n{:}".format(meta_model)) | ||||
|     logger.log("The optimizer is\n{:}".format(optimizer)) | ||||
|     logger.log("The scheduler is\n{:}".format(lr_scheduler)) | ||||
|     logger.log("Per epoch iterations = {:}".format(len(env_loader))) | ||||
|     logger.log("Per epoch iterations = {:}".format(len(train_env_loader))) | ||||
|  | ||||
|     if logger.path("model").exists(): | ||||
|         ckp_data = torch.load(logger.path("model")) | ||||
| @@ -122,7 +153,7 @@ def main(args): | ||||
|             "epochs", | ||||
|             "env_version", | ||||
|             "hidden_dim", | ||||
|             "init_lr", | ||||
|             "lr", | ||||
|             "layer_dim", | ||||
|             "time_dim", | ||||
|             "seq_length", | ||||
| @@ -152,7 +183,7 @@ def main(args): | ||||
|         ) | ||||
|  | ||||
|         loss_meter = epoch_train( | ||||
|             env_loader, | ||||
|             train_env_loader, | ||||
|             meta_model, | ||||
|             base_model, | ||||
|             optimizer, | ||||
| @@ -160,9 +191,16 @@ def main(args): | ||||
|             args.device, | ||||
|             logger, | ||||
|         ) | ||||
|  | ||||
|         valid_loss_meter = epoch_evaluate( | ||||
|             valid_env_loader, meta_model, base_model, criterion, args.device, logger | ||||
|         ) | ||||
|         logger.log( | ||||
|             head_str | ||||
|             + " meta-loss: {meter.avg:.4f} ({meter.count:.0f})".format(meter=loss_meter) | ||||
|             + " meta-train-loss: {meter.avg:.4f} ({meter.count:.0f})".format( | ||||
|                 meter=loss_meter | ||||
|             ) | ||||
|             + " meta-valid-loss: {meter.val:.4f}".format(meter=valid_loss_meter) | ||||
|             + " :: lr={:.5f}".format(min(lr_scheduler.get_last_lr())) | ||||
|             + "  :: last-success={:}".format(last_success_epoch) | ||||
|         ) | ||||
| @@ -231,14 +269,14 @@ def main(args): | ||||
|         # | ||||
|         new_param = meta_model.create_meta_embed() | ||||
|         optimizer = torch.optim.Adam( | ||||
|             [new_param], lr=args.init_lr, weight_decay=1e-5, amsgrad=True | ||||
|             [new_param], lr=args.refine_lr, weight_decay=1e-5, amsgrad=True | ||||
|         ) | ||||
|         meta_model.replace_append_learnt( | ||||
|             torch.Tensor([future_time]).to(args.device), new_param | ||||
|         ) | ||||
|         meta_model.eval() | ||||
|         base_model.train() | ||||
|         for iepoch in range(args.epochs): | ||||
|         for iepoch in range(args.refine_epochs): | ||||
|             optimizer.zero_grad() | ||||
|             [seq_containers] = meta_model(time_seqs) | ||||
|             future_container = seq_containers[-1] | ||||
| @@ -297,7 +335,7 @@ if __name__ == "__main__": | ||||
|     ) | ||||
|     ##### | ||||
|     parser.add_argument( | ||||
|         "--init_lr", | ||||
|         "--lr", | ||||
|         type=float, | ||||
|         default=0.005, | ||||
|         help="The initial learning rate for the optimizer (default is Adam)", | ||||
| @@ -321,10 +359,19 @@ if __name__ == "__main__": | ||||
|         help="Enlarge the #iterations for an epoch", | ||||
|     ) | ||||
|     parser.add_argument("--epochs", type=int, default=10000, help="The total #epochs.") | ||||
|     parser.add_argument( | ||||
|         "--refine_lr", | ||||
|         type=float, | ||||
|         default=0.005, | ||||
|         help="The learning rate for the optimizer, during refine", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--refine_epochs", type=int, default=1000, help="The final refine #epochs." | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--early_stop_thresh", | ||||
|         type=int, | ||||
|         default=50, | ||||
|         default=20, | ||||
|         help="The #epochs for early stop.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
| @@ -350,7 +397,7 @@ if __name__ == "__main__": | ||||
|         args.hidden_dim, | ||||
|         args.layer_dim, | ||||
|         args.time_dim, | ||||
|         args.init_lr, | ||||
|         args.lr, | ||||
|         args.weight_decay, | ||||
|         args.epochs, | ||||
|         args.env_version, | ||||
|   | ||||
| @@ -44,6 +44,7 @@ class LFNA_Meta(super_core.SuperModule): | ||||
|         self._append_meta_embed = dict(fixed=None, learnt=None) | ||||
|         self._append_meta_timestamps = dict(fixed=None, learnt=None) | ||||
|  | ||||
|         self._time_prob_drop = super_core.SuperDrop(dropout, (-1, 1), recover=False) | ||||
|         # build transformer | ||||
|         layers = [] | ||||
|         for ilayer in range(mha_depth): | ||||
| @@ -149,10 +150,12 @@ class LFNA_Meta(super_core.SuperModule): | ||||
|         meta_match = meta_match.view(batch, seq, -1) | ||||
|         # create the probability | ||||
|         time_probs = (1 / torch.exp(time_match_v * 10)).view(batch, seq, 1) | ||||
|         if self.training: | ||||
|             time_probs[:, -1, :] = 0 | ||||
|  | ||||
|         x_time_probs = self._time_prob_drop(time_probs) | ||||
|         # if self.training: | ||||
|         #    time_probs[:, -1, :] = 0 | ||||
|         unknown_token = self._unknown_token.view(1, 1, -1) | ||||
|         raw_meta_embed = time_probs * meta_match + (1 - time_probs) * unknown_token | ||||
|         raw_meta_embed = x_time_probs * meta_match + (1 - x_time_probs) * unknown_token | ||||
|  | ||||
|         meta_embed = self.meta_corrector(raw_meta_embed) | ||||
|         # create joint embed | ||||
|   | ||||
| @@ -151,12 +151,15 @@ class SyntheticDEnv(data.Dataset): | ||||
|         return len(self._timestamp_generator) | ||||
|  | ||||
|     def __repr__(self): | ||||
|         return "{name}({cur_num:}/{total} elements, ndim={ndim}, num_per_task={num_per_task})".format( | ||||
|         return "{name}({cur_num:}/{total} elements, ndim={ndim}, num_per_task={num_per_task}, range=[{xrange_min:.5f}~{xrange_max:.5f}], mode={mode})".format( | ||||
|             name=self.__class__.__name__, | ||||
|             cur_num=len(self), | ||||
|             total=len(self._timestamp_generator), | ||||
|             ndim=self._ndim, | ||||
|             num_per_task=self._num_per_task, | ||||
|             xrange_min=self.min_timestamp, | ||||
|             xrange_max=self.max_timestamp, | ||||
|             mode=self._timestamp_generator.mode, | ||||
|         ) | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -15,6 +15,7 @@ from .super_norm import SuperLayerNorm1D | ||||
| from .super_norm import SuperSimpleLearnableNorm | ||||
| from .super_norm import SuperIdentity | ||||
| from .super_dropout import SuperDropout | ||||
| from .super_dropout import SuperDrop | ||||
|  | ||||
| super_name2norm = { | ||||
|     "simple_norm": SuperSimpleNorm, | ||||
|   | ||||
| @@ -6,7 +6,7 @@ import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| import math | ||||
| from typing import Optional, Callable | ||||
| from typing import Optional, Callable, Tuple | ||||
|  | ||||
| import spaces | ||||
| from .super_module import SuperModule | ||||
| @@ -38,3 +38,46 @@ class SuperDropout(SuperModule): | ||||
|     def extra_repr(self) -> str: | ||||
|         xstr = "inplace=True" if self._inplace else "" | ||||
|         return "p={:}".format(self._p) + ", " + xstr | ||||
|  | ||||
|  | ||||
| class SuperDrop(SuperModule): | ||||
|     """Applies a the drop-path function element-wise.""" | ||||
|  | ||||
|     def __init__(self, p: float, dims: Tuple[int], recover: bool = True) -> None: | ||||
|         super(SuperDrop, self).__init__() | ||||
|         self._p = p | ||||
|         self._dims = dims | ||||
|         self._recover = recover | ||||
|  | ||||
|     @property | ||||
|     def abstract_search_space(self): | ||||
|         return spaces.VirtualNode(id(self)) | ||||
|  | ||||
|     def forward_candidate(self, input: torch.Tensor) -> torch.Tensor: | ||||
|         return self.forward_raw(input) | ||||
|  | ||||
|     def forward_raw(self, input: torch.Tensor) -> torch.Tensor: | ||||
|         if not self.training or self._p <= 0: | ||||
|             return input | ||||
|         keep_prob = 1 - self._p | ||||
|         shape = [input.shape[0]] + [ | ||||
|             x if y == -1 else y for x, y in zip(input.shape[1:], self._dims) | ||||
|         ] | ||||
|         random_tensor = keep_prob + torch.rand( | ||||
|             shape, dtype=input.dtype, device=input.device | ||||
|         ) | ||||
|         random_tensor.floor_()  # binarize | ||||
|         if self._recover: | ||||
|             return input.div(keep_prob) * random_tensor | ||||
|         else: | ||||
|             return input * random_tensor  # as masks | ||||
|  | ||||
|     def forward_with_container(self, input, container, prefix=[]): | ||||
|         return self.forward_raw(input) | ||||
|  | ||||
|     def extra_repr(self) -> str: | ||||
|         return ( | ||||
|             "p={:}".format(self._p) | ||||
|             + ", dims={:}".format(self._dims) | ||||
|             + ", recover={:}".format(self._recover) | ||||
|         ) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user