Update weight watcher codes
This commit is contained in:
		| @@ -90,9 +90,9 @@ def visualize_sss_info(api, dataset, vis_save_dir): | ||||
|     print ('Do not find cache file : {:}'.format(cache_file_path)) | ||||
|     params, flops, train_accs, valid_accs, test_accs = [], [], [], [], [] | ||||
|     for index in range(len(api)): | ||||
|       info = api.get_cost_info(index, dataset) | ||||
|       params.append(info['params']) | ||||
|       flops.append(info['flops']) | ||||
|       cost_info = api.get_cost_info(index, dataset, hp='90') | ||||
|       params.append(cost_info['params']) | ||||
|       flops.append(cost_info['flops']) | ||||
|       # accuracy | ||||
|       info = api.get_more_info(index, dataset, hp='90', is_random=False) | ||||
|       train_accs.append(info['train-accuracy']) | ||||
| @@ -178,9 +178,9 @@ def visualize_tss_info(api, dataset, vis_save_dir): | ||||
|     print ('Do not find cache file : {:}'.format(cache_file_path)) | ||||
|     params, flops, train_accs, valid_accs, test_accs = [], [], [], [], [] | ||||
|     for index in range(len(api)): | ||||
|       info = api.get_cost_info(index, dataset) | ||||
|       params.append(info['params']) | ||||
|       flops.append(info['flops']) | ||||
|       cost_info = api.get_cost_info(index, dataset, hp='12') | ||||
|       params.append(cost_info['params']) | ||||
|       flops.append(cost_info['flops']) | ||||
|       # accuracy | ||||
|       info = api.get_more_info(index, dataset, hp='200', is_random=False) | ||||
|       train_accs.append(info['train-accuracy']) | ||||
| @@ -190,6 +190,7 @@ def visualize_tss_info(api, dataset, vis_save_dir): | ||||
|         valid_accs.append(info['valid-accuracy']) | ||||
|       else: | ||||
|         valid_accs.append(info['valid-accuracy']) | ||||
|       print('') | ||||
|     info = {'params': params, 'flops': flops, 'train_accs': train_accs, 'valid_accs': valid_accs, 'test_accs': test_accs} | ||||
|     torch.save(info, cache_file_path) | ||||
|   else: | ||||
|   | ||||
| @@ -1,113 +0,0 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # | ||||
| ############################################################################################### | ||||
| # Before run these commands, the files must be properly put. | ||||
| # python exps/NAS-Bench-201/test-weights.py --base_path $HOME/.torch/NAS-Bench-201-v1_0-e61699 | ||||
| # python exps/NAS-Bench-201/test-weights.py --base_path $HOME/.torch/NAS-Bench-201-v1_1-096897 --dataset cifar10-valid --use_12 1 --use_valid 1 | ||||
| # bash ./scripts-search/NAS-Bench-201/test-weights.sh cifar10-valid 1 | ||||
| ############################################################################################### | ||||
| import os, gc, sys, math, argparse, psutil | ||||
| import numpy as np | ||||
| import torch | ||||
| from pathlib import Path | ||||
| from collections import OrderedDict | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from nas_201_api import NASBench201API as API | ||||
| from log_utils import time_string | ||||
| from models import get_cell_based_tiny_net | ||||
| from utils import weight_watcher | ||||
|  | ||||
|  | ||||
| def get_cor(A, B): | ||||
|   return float(np.corrcoef(A, B)[0,1]) | ||||
|  | ||||
|  | ||||
| def tostr(accdict, norms): | ||||
|   xstr = [] | ||||
|   for key, accs in accdict.items(): | ||||
|     cor = get_cor(accs, norms) | ||||
|     xstr.append('{:}: {:.3f}'.format(key, cor)) | ||||
|   return ' '.join(xstr) | ||||
|  | ||||
|  | ||||
| def evaluate(api, weight_dir, data: str, use_12epochs_result: bool): | ||||
|   print('\nEvaluate dataset={:}'.format(data)) | ||||
|   norms, process = [], psutil.Process(os.getpid()) | ||||
|   final_val_accs = OrderedDict({'cifar10': [], 'cifar100': [], 'ImageNet16-120': []}) | ||||
|   final_test_accs = OrderedDict({'cifar10': [], 'cifar100': [], 'ImageNet16-120': []}) | ||||
|   for idx in range(len(api)): | ||||
|     # info = api.get_more_info(idx, data, use_12epochs_result=use_12epochs_result, is_random=False) | ||||
|     for key in ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120']: | ||||
|       info = api.get_more_info(idx, key, use_12epochs_result=False, is_random=False) | ||||
|       if key == 'cifar10-valid': | ||||
|         final_val_accs['cifar10'].append(info['valid-accuracy']) | ||||
|       elif key == 'cifar10': | ||||
|         final_test_accs['cifar10'].append(info['test-accuracy']) | ||||
|       else: | ||||
|         final_test_accs[key].append(info['test-accuracy']) | ||||
|         final_val_accs[key].append(info['valid-accuracy']) | ||||
|     config = api.get_net_config(idx, data) | ||||
|     net = get_cell_based_tiny_net(config) | ||||
|     api.reload(weight_dir, idx) | ||||
|     params = api.get_net_param(idx, data, None, use_12epochs_result=use_12epochs_result) | ||||
|     cur_norms = [] | ||||
|     for seed, param in params.items(): | ||||
|       with torch.no_grad(): | ||||
|         net.load_state_dict(param) | ||||
|         _, summary = weight_watcher.analyze(net, alphas=False) | ||||
|         cur_norms.append(-summary['lognorm']) | ||||
|     cur_norm = float(np.mean(cur_norms)) | ||||
|     if math.isnan(cur_norm): | ||||
|       print ('  IGNORE {:} due to nan.'.format(idx)) | ||||
|       continue | ||||
|     norms.append(cur_norm) | ||||
|     api.clear_params(idx, None) | ||||
|     if idx % 200 == 199 or idx + 1 == len(api): | ||||
|       head = '{:05d}/{:05d}'.format(idx, len(api)) | ||||
|       stem_val = tostr(final_val_accs, norms) | ||||
|       stem_test = tostr(final_test_accs, norms) | ||||
|       print('{:} {:} {:} with {:} epochs ({:.2f} MB memory)'.format(time_string(), head, data, 12 if use_12epochs_result else 200, process.memory_info().rss / 1e6)) | ||||
|       print('  [Valid] -->>  {:}'.format(stem_val)) | ||||
|       print('  [Test.] -->>  {:}'.format(stem_test)) | ||||
|       gc.collect() | ||||
|  | ||||
|  | ||||
| def main(meta_file: str, weight_dir, save_dir, xdata, use_12epochs_result): | ||||
|   api = API(meta_file) | ||||
|   datasets = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120'] | ||||
|   print(time_string() + ' ' + '='*50) | ||||
|   for data in datasets: | ||||
|     nums = api.statistics(data, True) | ||||
|     total = sum([k*v for k, v in nums.items()]) | ||||
|     print('Using 012 epochs, trained on {:20s} : {:} trials in total ({:}).'.format(data, total, nums)) | ||||
|   print(time_string() + ' ' + '='*50) | ||||
|   for data in datasets: | ||||
|     nums = api.statistics(data, False) | ||||
|     total = sum([k*v for k, v in nums.items()]) | ||||
|     print('Using 200 epochs, trained on {:20s} : {:} trials in total ({:}).'.format(data, total, nums)) | ||||
|   print(time_string() + ' ' + '='*50) | ||||
|  | ||||
|   #evaluate(api, weight_dir, 'cifar10-valid', False, True) | ||||
|   evaluate(api, weight_dir, xdata, use_12epochs_result) | ||||
|    | ||||
|   print('{:} finish this test.'.format(time_string())) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("Analysis of NAS-Bench-201") | ||||
|   parser.add_argument('--save_dir',   type=str, default='./output/search-cell-nas-bench-201/visuals', help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--base_path',  type=str, default=None, help='The path to the NAS-Bench-201 benchmark file and weight dir.') | ||||
|   parser.add_argument('--dataset'  ,  type=str, default=None, help='.') | ||||
|   parser.add_argument('--use_12'   ,  type=int, default=None, help='.') | ||||
|   args = parser.parse_args() | ||||
|  | ||||
|   save_dir = Path(args.save_dir) | ||||
|   save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   meta_file = Path(args.base_path + '.pth') | ||||
|   weight_dir = Path(args.base_path + '-archive') | ||||
|   assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file) | ||||
|   assert weight_dir.exists() and weight_dir.is_dir(), 'invalid path for weight dir : {:}'.format(weight_dir) | ||||
|  | ||||
|   main(str(meta_file), weight_dir, save_dir, args.dataset, bool(args.use_12)) | ||||
|  | ||||
		Reference in New Issue
	
	Block a user