Update weight watcher codes
This commit is contained in:
		| @@ -1,20 +0,0 @@ | ||||
| #  | ||||
| # exps/experimental/test-api.py | ||||
| # | ||||
| import sys, time, random, argparse | ||||
| from copy import deepcopy | ||||
| import torchvision.models as models | ||||
| from pathlib import Path | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
|  | ||||
| from nas_201_api import NASBench201API as API | ||||
|  | ||||
|  | ||||
| def main(): | ||||
|   api = API(None) | ||||
|   info = api.get_more_info(100, 'cifar100', 199, False, True) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   main() | ||||
							
								
								
									
										151
									
								
								exps/experimental/test-ww-bench.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										151
									
								
								exps/experimental/test-ww-bench.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,151 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # | ||||
| ########################################################################################################################################################### | ||||
| # Before run these commands, the files must be properly put. | ||||
| # | ||||
| # python exps/experimental/test-ww-bench.py --base_path $HOME/.torch/NAS-Bench-201-v1_0-e61699 | ||||
| # python exps/experimental/test-ww-bench.py --base_path $HOME/.torch/NAS-Bench-201-v1_1-096897 --dataset cifar10-valid --use_12 1 --use_valid 1 | ||||
| # CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --base_path $HOME/.torch/NAS-Bench-201-v1_1-096897 --dataset cifar10 | ||||
| # CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space sss --base_path $HOME/.torch/NAS-Bench-301-v1_0 --dataset cifar10 | ||||
| # CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space sss --base_path $HOME/.torch/NAS-Bench-301-v1_0 --dataset cifar100 | ||||
| # CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space sss --base_path $HOME/.torch/NAS-Bench-301-v1_0 --dataset ImageNet16-120 | ||||
| ########################################################################################################################################################### | ||||
| import os, gc, sys, math, argparse, psutil | ||||
| import numpy as np | ||||
| import torch | ||||
| from pathlib import Path | ||||
| from collections import OrderedDict | ||||
| import matplotlib | ||||
| import seaborn as sns | ||||
| matplotlib.use('agg') | ||||
| import matplotlib.pyplot as plt | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from nas_201_api import NASBench201API, NASBench301API | ||||
| from log_utils import time_string | ||||
| from models import get_cell_based_tiny_net | ||||
| from utils import weight_watcher | ||||
|  | ||||
|  | ||||
| """ | ||||
| def get_cor(A, B): | ||||
|   return float(np.corrcoef(A, B)[0,1]) | ||||
|  | ||||
|  | ||||
| def tostr(accdict, norms): | ||||
|   xstr = [] | ||||
|   for key, accs in accdict.items(): | ||||
|     cor = get_cor(accs, norms) | ||||
|     xstr.append('{:}: {:.3f}'.format(key, cor)) | ||||
|   return ' '.join(xstr) | ||||
| """ | ||||
|  | ||||
| def evaluate(api, weight_dir, data: str): | ||||
|   print('\nEvaluate dataset={:}'.format(data)) | ||||
|   process = psutil.Process(os.getpid()) | ||||
|   norms, accuracies = [], [] | ||||
|   ok, total = 0, 5000 | ||||
|   for idx in range(total): | ||||
|     arch_index = api.random() | ||||
|     api.reload(weight_dir, arch_index) | ||||
|     # compute the weight watcher results | ||||
|     config = api.get_net_config(arch_index, data) | ||||
|     net = get_cell_based_tiny_net(config) | ||||
|     meta_info = api.query_meta_info_by_index(arch_index, hp='200' if isinstance(api, NASBench201API) else '90') | ||||
|     params = meta_info.get_net_param(data, 777) | ||||
|     with torch.no_grad(): | ||||
|       net.load_state_dict(params) | ||||
|       _, summary = weight_watcher.analyze(net, alphas=False) | ||||
|       if 'lognorm' not in summary: | ||||
|         api.clear_params(arch_index, None) | ||||
|         del net ; continue | ||||
|         continue | ||||
|       cur_norm = -summary['lognorm'] | ||||
|     api.clear_params(arch_index, None) | ||||
|     if math.isnan(cur_norm): | ||||
|       del net, meta_info | ||||
|       continue | ||||
|     else: | ||||
|       ok += 1 | ||||
|       norms.append(cur_norm) | ||||
|     # query the accuracy | ||||
|     info = meta_info.get_metrics(data, 'ori-test', iepoch=None, is_random=777) | ||||
|     accuracies.append(info['accuracy']) | ||||
|     del net, meta_info | ||||
|     # print the information | ||||
|     if idx % 20 == 0: | ||||
|       gc.collect() | ||||
|       print('{:} {:04d}_{:04d}/{:04d} ({:.2f} MB memory)'.format(time_string(), ok, idx, total, process.memory_info().rss / 1e6)) | ||||
|   return norms, accuracies | ||||
|  | ||||
|  | ||||
| def main(search_space, meta_file: str, weight_dir, save_dir, xdata): | ||||
|   API = NASBench201API if search_space == 'tss' else NASBench301API | ||||
|   save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   api = API(meta_file, verbose=False) | ||||
|   datasets = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120'] | ||||
|   print(time_string() + ' ' + '='*50) | ||||
|   for data in datasets: | ||||
|     hps = api.avaliable_hps | ||||
|     for hp in hps: | ||||
|       nums = api.statistics(data, hp=hp) | ||||
|       total = sum([k*v for k, v in nums.items()]) | ||||
|       print('Using {:3s} epochs, trained on {:20s} : {:} trials in total ({:}).'.format(hp, data, total, nums)) | ||||
|   print(time_string() + ' ' + '='*50) | ||||
|  | ||||
|   norms, accuracies = evaluate(api, weight_dir, xdata) | ||||
|  | ||||
|   indexes = list(range(len(norms))) | ||||
|   norm_indexes = sorted(indexes, key=lambda i: norms[i]) | ||||
|   accy_indexes = sorted(indexes, key=lambda i: accuracies[i]) | ||||
|   labels = [] | ||||
|   for index in norm_indexes: | ||||
|     labels.append(accy_indexes.index(index)) | ||||
|  | ||||
|   dpi, width, height = 200, 1400,  800 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   LabelSize, LegendFontsize = 18, 12 | ||||
|   resnet_scale, resnet_alpha = 120, 0.5 | ||||
|  | ||||
|   fig = plt.figure(figsize=figsize) | ||||
|   ax  = fig.add_subplot(111) | ||||
|   plt.xlim(min(indexes), max(indexes)) | ||||
|   plt.ylim(min(indexes), max(indexes)) | ||||
|   # plt.ylabel('y').set_rotation(30) | ||||
|   plt.yticks(np.arange(min(indexes), max(indexes), max(indexes)//3), fontsize=LegendFontsize, rotation='vertical') | ||||
|   plt.xticks(np.arange(min(indexes), max(indexes), max(indexes)//5), fontsize=LegendFontsize) | ||||
|   ax.scatter(indexes, labels , marker='*', s=0.5, c='tab:red'  , alpha=0.8) | ||||
|   ax.scatter(indexes, indexes, marker='o', s=0.5, c='tab:blue' , alpha=0.8) | ||||
|   ax.scatter([-1], [-1], marker='o', s=100, c='tab:blue' , label='Test accuracy') | ||||
|   ax.scatter([-1], [-1], marker='*', s=100, c='tab:red'  , label='Weight watcher') | ||||
|   plt.grid(zorder=0) | ||||
|   ax.set_axisbelow(True) | ||||
|   plt.legend(loc=0, fontsize=LegendFontsize) | ||||
|   ax.set_xlabel('architecture ranking sorted by the test accuracy ', fontsize=LabelSize) | ||||
|   ax.set_ylabel('architecture ranking computed by weight watcher', fontsize=LabelSize) | ||||
|   save_path = (save_dir / '{:}-{:}-test-ww.pdf'.format(search_space, xdata)).resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf') | ||||
|   save_path = (save_dir / '{:}-{:}-test-ww.png'.format(search_space, xdata)).resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||
|   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|    | ||||
|   print('{:} finish this test.'.format(time_string())) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("Analysis of NAS-Bench-201") | ||||
|   parser.add_argument('--save_dir',     type=str, default='./output/vis-nas-bench/', help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--search_space', type=str, default=None, choices=['tss', 'sss'], help='The search space.') | ||||
|   parser.add_argument('--base_path',    type=str, default=None, help='The path to the NAS-Bench-201 benchmark file and weight dir.') | ||||
|   parser.add_argument('--dataset'  ,    type=str, default=None, help='.') | ||||
|   args = parser.parse_args() | ||||
|  | ||||
|   save_dir = Path(args.save_dir) | ||||
|   save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   meta_file = Path(args.base_path + '.pth') | ||||
|   weight_dir = Path(args.base_path + '-archive') | ||||
|   assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file) | ||||
|   assert weight_dir.exists() and weight_dir.is_dir(), 'invalid path for weight dir : {:}'.format(weight_dir) | ||||
|  | ||||
|   main(args.search_space, str(meta_file), weight_dir, save_dir, args.dataset) | ||||
|  | ||||
		Reference in New Issue
	
	Block a user