Update weight watcher codes
This commit is contained in:
		| @@ -46,7 +46,8 @@ It is recommended to put these data into `$TORCH_HOME` (`~/.torch/` by default). | ||||
| ``` | ||||
| from nas_201_api import NASBench201API as API | ||||
| api = API('$path_to_meta_nas_bench_file') | ||||
| api = API('NAS-Bench-201-v1_1-096897.pth') | ||||
| # Create an API without the verbose log | ||||
| api = API('NAS-Bench-201-v1_1-096897.pth', verbose=False) | ||||
| # The default path for benchmark file is '{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-201-v1_1-096897.pth') | ||||
| api = API(None) | ||||
| ``` | ||||
|   | ||||
| @@ -90,9 +90,9 @@ def visualize_sss_info(api, dataset, vis_save_dir): | ||||
|     print ('Do not find cache file : {:}'.format(cache_file_path)) | ||||
|     params, flops, train_accs, valid_accs, test_accs = [], [], [], [], [] | ||||
|     for index in range(len(api)): | ||||
|       info = api.get_cost_info(index, dataset) | ||||
|       params.append(info['params']) | ||||
|       flops.append(info['flops']) | ||||
|       cost_info = api.get_cost_info(index, dataset, hp='90') | ||||
|       params.append(cost_info['params']) | ||||
|       flops.append(cost_info['flops']) | ||||
|       # accuracy | ||||
|       info = api.get_more_info(index, dataset, hp='90', is_random=False) | ||||
|       train_accs.append(info['train-accuracy']) | ||||
| @@ -178,9 +178,9 @@ def visualize_tss_info(api, dataset, vis_save_dir): | ||||
|     print ('Do not find cache file : {:}'.format(cache_file_path)) | ||||
|     params, flops, train_accs, valid_accs, test_accs = [], [], [], [], [] | ||||
|     for index in range(len(api)): | ||||
|       info = api.get_cost_info(index, dataset) | ||||
|       params.append(info['params']) | ||||
|       flops.append(info['flops']) | ||||
|       cost_info = api.get_cost_info(index, dataset, hp='12') | ||||
|       params.append(cost_info['params']) | ||||
|       flops.append(cost_info['flops']) | ||||
|       # accuracy | ||||
|       info = api.get_more_info(index, dataset, hp='200', is_random=False) | ||||
|       train_accs.append(info['train-accuracy']) | ||||
| @@ -190,6 +190,7 @@ def visualize_tss_info(api, dataset, vis_save_dir): | ||||
|         valid_accs.append(info['valid-accuracy']) | ||||
|       else: | ||||
|         valid_accs.append(info['valid-accuracy']) | ||||
|       print('') | ||||
|     info = {'params': params, 'flops': flops, 'train_accs': train_accs, 'valid_accs': valid_accs, 'test_accs': test_accs} | ||||
|     torch.save(info, cache_file_path) | ||||
|   else: | ||||
|   | ||||
| @@ -1,113 +0,0 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # | ||||
| ############################################################################################### | ||||
| # Before run these commands, the files must be properly put. | ||||
| # python exps/NAS-Bench-201/test-weights.py --base_path $HOME/.torch/NAS-Bench-201-v1_0-e61699 | ||||
| # python exps/NAS-Bench-201/test-weights.py --base_path $HOME/.torch/NAS-Bench-201-v1_1-096897 --dataset cifar10-valid --use_12 1 --use_valid 1 | ||||
| # bash ./scripts-search/NAS-Bench-201/test-weights.sh cifar10-valid 1 | ||||
| ############################################################################################### | ||||
| import os, gc, sys, math, argparse, psutil | ||||
| import numpy as np | ||||
| import torch | ||||
| from pathlib import Path | ||||
| from collections import OrderedDict | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from nas_201_api import NASBench201API as API | ||||
| from log_utils import time_string | ||||
| from models import get_cell_based_tiny_net | ||||
| from utils import weight_watcher | ||||
|  | ||||
|  | ||||
| def get_cor(A, B): | ||||
|   return float(np.corrcoef(A, B)[0,1]) | ||||
|  | ||||
|  | ||||
| def tostr(accdict, norms): | ||||
|   xstr = [] | ||||
|   for key, accs in accdict.items(): | ||||
|     cor = get_cor(accs, norms) | ||||
|     xstr.append('{:}: {:.3f}'.format(key, cor)) | ||||
|   return ' '.join(xstr) | ||||
|  | ||||
|  | ||||
| def evaluate(api, weight_dir, data: str, use_12epochs_result: bool): | ||||
|   print('\nEvaluate dataset={:}'.format(data)) | ||||
|   norms, process = [], psutil.Process(os.getpid()) | ||||
|   final_val_accs = OrderedDict({'cifar10': [], 'cifar100': [], 'ImageNet16-120': []}) | ||||
|   final_test_accs = OrderedDict({'cifar10': [], 'cifar100': [], 'ImageNet16-120': []}) | ||||
|   for idx in range(len(api)): | ||||
|     # info = api.get_more_info(idx, data, use_12epochs_result=use_12epochs_result, is_random=False) | ||||
|     for key in ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120']: | ||||
|       info = api.get_more_info(idx, key, use_12epochs_result=False, is_random=False) | ||||
|       if key == 'cifar10-valid': | ||||
|         final_val_accs['cifar10'].append(info['valid-accuracy']) | ||||
|       elif key == 'cifar10': | ||||
|         final_test_accs['cifar10'].append(info['test-accuracy']) | ||||
|       else: | ||||
|         final_test_accs[key].append(info['test-accuracy']) | ||||
|         final_val_accs[key].append(info['valid-accuracy']) | ||||
|     config = api.get_net_config(idx, data) | ||||
|     net = get_cell_based_tiny_net(config) | ||||
|     api.reload(weight_dir, idx) | ||||
|     params = api.get_net_param(idx, data, None, use_12epochs_result=use_12epochs_result) | ||||
|     cur_norms = [] | ||||
|     for seed, param in params.items(): | ||||
|       with torch.no_grad(): | ||||
|         net.load_state_dict(param) | ||||
|         _, summary = weight_watcher.analyze(net, alphas=False) | ||||
|         cur_norms.append(-summary['lognorm']) | ||||
|     cur_norm = float(np.mean(cur_norms)) | ||||
|     if math.isnan(cur_norm): | ||||
|       print ('  IGNORE {:} due to nan.'.format(idx)) | ||||
|       continue | ||||
|     norms.append(cur_norm) | ||||
|     api.clear_params(idx, None) | ||||
|     if idx % 200 == 199 or idx + 1 == len(api): | ||||
|       head = '{:05d}/{:05d}'.format(idx, len(api)) | ||||
|       stem_val = tostr(final_val_accs, norms) | ||||
|       stem_test = tostr(final_test_accs, norms) | ||||
|       print('{:} {:} {:} with {:} epochs ({:.2f} MB memory)'.format(time_string(), head, data, 12 if use_12epochs_result else 200, process.memory_info().rss / 1e6)) | ||||
|       print('  [Valid] -->>  {:}'.format(stem_val)) | ||||
|       print('  [Test.] -->>  {:}'.format(stem_test)) | ||||
|       gc.collect() | ||||
|  | ||||
|  | ||||
| def main(meta_file: str, weight_dir, save_dir, xdata, use_12epochs_result): | ||||
|   api = API(meta_file) | ||||
|   datasets = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120'] | ||||
|   print(time_string() + ' ' + '='*50) | ||||
|   for data in datasets: | ||||
|     nums = api.statistics(data, True) | ||||
|     total = sum([k*v for k, v in nums.items()]) | ||||
|     print('Using 012 epochs, trained on {:20s} : {:} trials in total ({:}).'.format(data, total, nums)) | ||||
|   print(time_string() + ' ' + '='*50) | ||||
|   for data in datasets: | ||||
|     nums = api.statistics(data, False) | ||||
|     total = sum([k*v for k, v in nums.items()]) | ||||
|     print('Using 200 epochs, trained on {:20s} : {:} trials in total ({:}).'.format(data, total, nums)) | ||||
|   print(time_string() + ' ' + '='*50) | ||||
|  | ||||
|   #evaluate(api, weight_dir, 'cifar10-valid', False, True) | ||||
|   evaluate(api, weight_dir, xdata, use_12epochs_result) | ||||
|    | ||||
|   print('{:} finish this test.'.format(time_string())) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("Analysis of NAS-Bench-201") | ||||
|   parser.add_argument('--save_dir',   type=str, default='./output/search-cell-nas-bench-201/visuals', help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--base_path',  type=str, default=None, help='The path to the NAS-Bench-201 benchmark file and weight dir.') | ||||
|   parser.add_argument('--dataset'  ,  type=str, default=None, help='.') | ||||
|   parser.add_argument('--use_12'   ,  type=int, default=None, help='.') | ||||
|   args = parser.parse_args() | ||||
|  | ||||
|   save_dir = Path(args.save_dir) | ||||
|   save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   meta_file = Path(args.base_path + '.pth') | ||||
|   weight_dir = Path(args.base_path + '-archive') | ||||
|   assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file) | ||||
|   assert weight_dir.exists() and weight_dir.is_dir(), 'invalid path for weight dir : {:}'.format(weight_dir) | ||||
|  | ||||
|   main(str(meta_file), weight_dir, save_dir, args.dataset, bool(args.use_12)) | ||||
|  | ||||
| @@ -1,20 +0,0 @@ | ||||
| #  | ||||
| # exps/experimental/test-api.py | ||||
| # | ||||
| import sys, time, random, argparse | ||||
| from copy import deepcopy | ||||
| import torchvision.models as models | ||||
| from pathlib import Path | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
|  | ||||
| from nas_201_api import NASBench201API as API | ||||
|  | ||||
|  | ||||
| def main(): | ||||
|   api = API(None) | ||||
|   info = api.get_more_info(100, 'cifar100', 199, False, True) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   main() | ||||
							
								
								
									
										151
									
								
								exps/experimental/test-ww-bench.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										151
									
								
								exps/experimental/test-ww-bench.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,151 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # | ||||
| ########################################################################################################################################################### | ||||
| # Before run these commands, the files must be properly put. | ||||
| # | ||||
| # python exps/experimental/test-ww-bench.py --base_path $HOME/.torch/NAS-Bench-201-v1_0-e61699 | ||||
| # python exps/experimental/test-ww-bench.py --base_path $HOME/.torch/NAS-Bench-201-v1_1-096897 --dataset cifar10-valid --use_12 1 --use_valid 1 | ||||
| # CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --base_path $HOME/.torch/NAS-Bench-201-v1_1-096897 --dataset cifar10 | ||||
| # CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space sss --base_path $HOME/.torch/NAS-Bench-301-v1_0 --dataset cifar10 | ||||
| # CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space sss --base_path $HOME/.torch/NAS-Bench-301-v1_0 --dataset cifar100 | ||||
| # CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/experimental/test-ww-bench.py --search_space sss --base_path $HOME/.torch/NAS-Bench-301-v1_0 --dataset ImageNet16-120 | ||||
| ########################################################################################################################################################### | ||||
| import os, gc, sys, math, argparse, psutil | ||||
| import numpy as np | ||||
| import torch | ||||
| from pathlib import Path | ||||
| from collections import OrderedDict | ||||
| import matplotlib | ||||
| import seaborn as sns | ||||
| matplotlib.use('agg') | ||||
| import matplotlib.pyplot as plt | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from nas_201_api import NASBench201API, NASBench301API | ||||
| from log_utils import time_string | ||||
| from models import get_cell_based_tiny_net | ||||
| from utils import weight_watcher | ||||
|  | ||||
|  | ||||
| """ | ||||
| def get_cor(A, B): | ||||
|   return float(np.corrcoef(A, B)[0,1]) | ||||
|  | ||||
|  | ||||
| def tostr(accdict, norms): | ||||
|   xstr = [] | ||||
|   for key, accs in accdict.items(): | ||||
|     cor = get_cor(accs, norms) | ||||
|     xstr.append('{:}: {:.3f}'.format(key, cor)) | ||||
|   return ' '.join(xstr) | ||||
| """ | ||||
|  | ||||
| def evaluate(api, weight_dir, data: str): | ||||
|   print('\nEvaluate dataset={:}'.format(data)) | ||||
|   process = psutil.Process(os.getpid()) | ||||
|   norms, accuracies = [], [] | ||||
|   ok, total = 0, 5000 | ||||
|   for idx in range(total): | ||||
|     arch_index = api.random() | ||||
|     api.reload(weight_dir, arch_index) | ||||
|     # compute the weight watcher results | ||||
|     config = api.get_net_config(arch_index, data) | ||||
|     net = get_cell_based_tiny_net(config) | ||||
|     meta_info = api.query_meta_info_by_index(arch_index, hp='200' if isinstance(api, NASBench201API) else '90') | ||||
|     params = meta_info.get_net_param(data, 777) | ||||
|     with torch.no_grad(): | ||||
|       net.load_state_dict(params) | ||||
|       _, summary = weight_watcher.analyze(net, alphas=False) | ||||
|       if 'lognorm' not in summary: | ||||
|         api.clear_params(arch_index, None) | ||||
|         del net ; continue | ||||
|         continue | ||||
|       cur_norm = -summary['lognorm'] | ||||
|     api.clear_params(arch_index, None) | ||||
|     if math.isnan(cur_norm): | ||||
|       del net, meta_info | ||||
|       continue | ||||
|     else: | ||||
|       ok += 1 | ||||
|       norms.append(cur_norm) | ||||
|     # query the accuracy | ||||
|     info = meta_info.get_metrics(data, 'ori-test', iepoch=None, is_random=777) | ||||
|     accuracies.append(info['accuracy']) | ||||
|     del net, meta_info | ||||
|     # print the information | ||||
|     if idx % 20 == 0: | ||||
|       gc.collect() | ||||
|       print('{:} {:04d}_{:04d}/{:04d} ({:.2f} MB memory)'.format(time_string(), ok, idx, total, process.memory_info().rss / 1e6)) | ||||
|   return norms, accuracies | ||||
|  | ||||
|  | ||||
| def main(search_space, meta_file: str, weight_dir, save_dir, xdata): | ||||
|   API = NASBench201API if search_space == 'tss' else NASBench301API | ||||
|   save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   api = API(meta_file, verbose=False) | ||||
|   datasets = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120'] | ||||
|   print(time_string() + ' ' + '='*50) | ||||
|   for data in datasets: | ||||
|     hps = api.avaliable_hps | ||||
|     for hp in hps: | ||||
|       nums = api.statistics(data, hp=hp) | ||||
|       total = sum([k*v for k, v in nums.items()]) | ||||
|       print('Using {:3s} epochs, trained on {:20s} : {:} trials in total ({:}).'.format(hp, data, total, nums)) | ||||
|   print(time_string() + ' ' + '='*50) | ||||
|  | ||||
|   norms, accuracies = evaluate(api, weight_dir, xdata) | ||||
|  | ||||
|   indexes = list(range(len(norms))) | ||||
|   norm_indexes = sorted(indexes, key=lambda i: norms[i]) | ||||
|   accy_indexes = sorted(indexes, key=lambda i: accuracies[i]) | ||||
|   labels = [] | ||||
|   for index in norm_indexes: | ||||
|     labels.append(accy_indexes.index(index)) | ||||
|  | ||||
|   dpi, width, height = 200, 1400,  800 | ||||
|   figsize = width / float(dpi), height / float(dpi) | ||||
|   LabelSize, LegendFontsize = 18, 12 | ||||
|   resnet_scale, resnet_alpha = 120, 0.5 | ||||
|  | ||||
|   fig = plt.figure(figsize=figsize) | ||||
|   ax  = fig.add_subplot(111) | ||||
|   plt.xlim(min(indexes), max(indexes)) | ||||
|   plt.ylim(min(indexes), max(indexes)) | ||||
|   # plt.ylabel('y').set_rotation(30) | ||||
|   plt.yticks(np.arange(min(indexes), max(indexes), max(indexes)//3), fontsize=LegendFontsize, rotation='vertical') | ||||
|   plt.xticks(np.arange(min(indexes), max(indexes), max(indexes)//5), fontsize=LegendFontsize) | ||||
|   ax.scatter(indexes, labels , marker='*', s=0.5, c='tab:red'  , alpha=0.8) | ||||
|   ax.scatter(indexes, indexes, marker='o', s=0.5, c='tab:blue' , alpha=0.8) | ||||
|   ax.scatter([-1], [-1], marker='o', s=100, c='tab:blue' , label='Test accuracy') | ||||
|   ax.scatter([-1], [-1], marker='*', s=100, c='tab:red'  , label='Weight watcher') | ||||
|   plt.grid(zorder=0) | ||||
|   ax.set_axisbelow(True) | ||||
|   plt.legend(loc=0, fontsize=LegendFontsize) | ||||
|   ax.set_xlabel('architecture ranking sorted by the test accuracy ', fontsize=LabelSize) | ||||
|   ax.set_ylabel('architecture ranking computed by weight watcher', fontsize=LabelSize) | ||||
|   save_path = (save_dir / '{:}-{:}-test-ww.pdf'.format(search_space, xdata)).resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf') | ||||
|   save_path = (save_dir / '{:}-{:}-test-ww.png'.format(search_space, xdata)).resolve() | ||||
|   fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') | ||||
|   print ('{:} save into {:}'.format(time_string(), save_path)) | ||||
|    | ||||
|   print('{:} finish this test.'.format(time_string())) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("Analysis of NAS-Bench-201") | ||||
|   parser.add_argument('--save_dir',     type=str, default='./output/vis-nas-bench/', help='The base-name of folder to save checkpoints and log.') | ||||
|   parser.add_argument('--search_space', type=str, default=None, choices=['tss', 'sss'], help='The search space.') | ||||
|   parser.add_argument('--base_path',    type=str, default=None, help='The path to the NAS-Bench-201 benchmark file and weight dir.') | ||||
|   parser.add_argument('--dataset'  ,    type=str, default=None, help='.') | ||||
|   args = parser.parse_args() | ||||
|  | ||||
|   save_dir = Path(args.save_dir) | ||||
|   save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   meta_file = Path(args.base_path + '.pth') | ||||
|   weight_dir = Path(args.base_path + '-archive') | ||||
|   assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file) | ||||
|   assert weight_dir.exists() and weight_dir.is_dir(), 'invalid path for weight dir : {:}'.format(weight_dir) | ||||
|  | ||||
|   main(args.search_space, str(meta_file), weight_dir, save_dir, args.dataset) | ||||
|  | ||||
| @@ -77,6 +77,7 @@ class NASBench201API(NASBenchMetaAPI): | ||||
|     self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] ) | ||||
|     # This is a dict mapping each architecture to a dict, where the key is #epochs and the value is ArchResults | ||||
|     self.arch2infos_dict = OrderedDict() | ||||
|     self._avaliable_hps = set(['12', '200']) | ||||
|     for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())): | ||||
|       all_info = file_path_or_dict['arch2infos'][xkey] | ||||
|       hp2archres = OrderedDict() | ||||
|   | ||||
| @@ -75,11 +75,13 @@ class NASBench301API(NASBenchMetaAPI): | ||||
|     self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] ) | ||||
|     # This is a dict mapping each architecture to a dict, where the key is #epochs and the value is ArchResults | ||||
|     self.arch2infos_dict = OrderedDict() | ||||
|     self._avaliable_hps = set() | ||||
|     for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())): | ||||
|       all_infos = file_path_or_dict['arch2infos'][xkey] | ||||
|       hp2archres = OrderedDict() | ||||
|       for hp_key, results in all_infos.items(): | ||||
|         hp2archres[hp_key] = ArchResults.create_from_state_dict(results) | ||||
|         self._avaliable_hps.add(hp_key)  # save the avaliable hyper-parameter | ||||
|       self.arch2infos_dict[xkey] = hp2archres | ||||
|     self.evaluated_indexes = sorted(list(file_path_or_dict['evaluated_indexes'])) | ||||
|     self.archstr2index = {} | ||||
|   | ||||
| @@ -57,6 +57,10 @@ class NASBenchMetaAPI(metaclass=abc.ABCMeta): | ||||
|   def __repr__(self): | ||||
|     return ('{name}({num}/{total} architectures, file={filename})'.format(name=self.__class__.__name__, num=len(self.evaluated_indexes), total=len(self.meta_archs), filename=self.filename)) | ||||
|  | ||||
|   @property | ||||
|   def avaliable_hps(self): | ||||
|     return list(copy.deepcopy(self._avaliable_hps)) | ||||
|  | ||||
|   def random(self): | ||||
|     """Return a random index of all architectures.""" | ||||
|     return random.randint(0, len(self.meta_archs)-1) | ||||
|   | ||||
| @@ -1,21 +0,0 @@ | ||||
| #!/bin/bash | ||||
| # bash ./scripts-search/NAS-Bench-201/test-weights.sh cifar10-valid 1 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 2 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 2 parameters for dataset and use_12_epoch" | ||||
|   exit 1 | ||||
| fi | ||||
|  | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
|   echo "Must set TORCH_HOME envoriment variable for data dir saving" | ||||
|   exit 1 | ||||
| else | ||||
|   echo "TORCH_HOME : $TORCH_HOME" | ||||
| fi | ||||
|  | ||||
| CUDA_VISIBLE_DEVICES='' OMP_NUM_THREADS=4 python exps/NAS-Bench-201/test-weights.py \ | ||||
| 	--base_path $HOME/.torch/NAS-Bench-201-v1_1-096897 \ | ||||
| 	--dataset $1 \ | ||||
| 	--use_12 $2 | ||||
		Reference in New Issue
	
	Block a user